INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

May 15, 2020

Integers and Divisors | ISI-B.Stat Entrance | TOMATO 98

Try this beautiful problem from Integer based on Integers and Divisors useful for ISI B.Stat Entrance.

Integers and Divisors | ISI B.Stat Entrance | Problem-98


The number of positive integers which divide 240 (where both 1 and 240 are considered as divisors) is

  • 20
  • 18
  • 16
  • 12

Key Concepts


Integer

Divisor

Number theory

Check the Answer


Answer: 20

TOMATO, Problem 98

Challenges and Thrills in Pre College Mathematics

Try with Hints


We have to find out the number of positive integers which divide 240.so at first we have to find out the factors of 240...

\(240=2 \times 120\)

\(240=3 \times 80\)

\(240=4 \times 60\)

\(240=5 \times 48\)

\(240=6 \times 40\)

\(240=8 \times 30\)

\(240=10 \times 24\)

\(240=12 \times 20\)

\(240=15 \times 16\)

\(240=20 \times 12\)

\(240=24 \times 10\) ..............

so we notice that the divisors are repeat........

Can you now finish the problem ..........

We notice that after \(240=15 \times 16\) this stape all the factors are repeats.....so we have to calculate up to \(240=15 \times 16\) step only....

can you finish the problem........

Therefore the total number of positive integers are \(1,2,3,4,5,6,8,10,12,15,20,24,30,40,48,60,80,120,240\) i.e \(20\)

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter