How Cheenta works to ensure student success?
Explore the Back-Story

# Integers | AIME I, 1993 Problem | Question 4

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1993 based on Integers.

## Integer - AIME I, 1993

Find the number of four topics of integers (a,b,c,d) with 0<a<b<c<d<500 satisfy a+d=b+c and bc-ad=93.

• is 107
• is 870
• is 840
• cannot be determined from the given information

Integers

Digits

Algebra

## Check the Answer

Answer: is 870.

AIME I, 1993, Question 4

Elementary Algebra by Hall and Knight

## Try with Hints

First hint

Let k=a+d=b+c

or, d=k-a, b=k-c,

or, (k-c)c-a(k-a)=k(c-a)-(c-a)(c+a)

=(a-c)(a+c-k)

=(c-a)(d-c)=93

Second Hint

(c-a)(d-c)=(1,93),(3,31),(31,3),(93,1)

solving for c

(a,b,c,d)=(c-93,c-92,c,c+1),(c-31,c-28,c,c+3),(c-1,c+92,c,c+93),(c-3,c+28,c,c+31)

Final Step

taking first two solutions a<b<c<d<500

or,$1 \leq c-93, c+1 \leq 499$

or, $94 \leq c \leq 498$ gives 405 solutions

and $1 \leq c-31, c+3 \leq 499$

or, $32 \leq c \leq 496$ gives 465 solutions

or, 405+465=870 solutions.

## Subscribe to Cheenta at Youtube

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1993 based on Integers.

## Integer - AIME I, 1993

Find the number of four topics of integers (a,b,c,d) with 0<a<b<c<d<500 satisfy a+d=b+c and bc-ad=93.

• is 107
• is 870
• is 840
• cannot be determined from the given information

Integers

Digits

Algebra

## Check the Answer

Answer: is 870.

AIME I, 1993, Question 4

Elementary Algebra by Hall and Knight

## Try with Hints

First hint

Let k=a+d=b+c

or, d=k-a, b=k-c,

or, (k-c)c-a(k-a)=k(c-a)-(c-a)(c+a)

=(a-c)(a+c-k)

=(c-a)(d-c)=93

Second Hint

(c-a)(d-c)=(1,93),(3,31),(31,3),(93,1)

solving for c

(a,b,c,d)=(c-93,c-92,c,c+1),(c-31,c-28,c,c+3),(c-1,c+92,c,c+93),(c-3,c+28,c,c+31)

Final Step

taking first two solutions a<b<c<d<500

or,$1 \leq c-93, c+1 \leq 499$

or, $94 \leq c \leq 498$ gives 405 solutions

and $1 \leq c-31, c+3 \leq 499$

or, $32 \leq c \leq 496$ gives 465 solutions

or, 405+465=870 solutions.

## Subscribe to Cheenta at Youtube

This site uses Akismet to reduce spam. Learn how your comment data is processed.

### Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

### Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
HALL OF FAMEBLOG
CHEENTA ON DEMANDBOSE OLYMPIAD
CAREERTEAM
support@cheenta.com