Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Integer Solution of Polynomial | RMO 2015 Chennai Region

Try this problem from RMO 2015 from Chennai Region based on Integer Solution of Polynomial.

Problem: Integer Solution of Polynomial

Solve the equation y^3 + 3y^2 + 3y = x^3 + 5x^2 - 19x + 20  for positive integers x, y.

Discussion:

y^3 + 3y^2 + 3y = x^3 + 5x^2 - 19x + 20

Adding 1 to both sides and adjusting we get

y^3 + 3y^2 + 3y + 1 = x^3 + 3x^2 + 3x + 1 + 2x^2 - 22x + 20

\Rightarrow (y+1)^3 = (x+1)^3 + 2x^2 - 22x + 20

We have two cases :

Case 1: 2x^2 - 22x + 20 \le 0  implying y \le x

2x^2 - 22x + 20 \le 0
\Rightarrow x^2 - 11x + 10 \le 0
\Rightarrow (x-1)(x-10) \le 0
\Rightarrow 1 \le x \le 10

This is an easy check (plug in 1, 2, ... , 10).

We find x = 1, x = 10;  works.

Case 2: 2x^2 - 22x + 20 \ge 0  implying y \ge x

Then y is at least x+1.

(x+1)^3 + 2x^2 - 22x + 20 = (y+1)^3 \ge (x+1+1)^3 = (x+2)^3
\Rightarrow (x+1)^3 + 2x^2 - 22x + 20 \ge (x+2)^3
\Rightarrow 2x^2 - 22x + 20 \ge (x+2)^3 - (x+1)^3
\Rightarrow 2x^2 - 22x + 20 \ge x^3 + 6x^2 + 12x + 1 - x^3 - 3x^2 - 3x - 1
\Rightarrow 2x^2 - 22x + 20 \ge 3x^2 + 9x -7
\Rightarrow 0 \ge x^2 + 31x -27
But this implies \displaystyle{\Rightarrow \frac{-31 - \sqrt{1013}}{2} \le x \le \frac{-31 + \sqrt{1013}}{2}}

But x is a positive integer. Hence this is not possible.

Chatuspathi:

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com