Try this beautiful Integer based Problem from Algebra, from PRMO 2018.

## Integer based Problem – PRMO 2018, Question 20

Determine the sum of all possible positive integers n, the product of whose digits equals \(n^2 -15n – 27 \)

- $9$
- $17$
- $34$

**Key Concepts**

Algebra

Integer

multiplication

## Check the Answer

But try the problem first…

Answer:$17$

PRMO-2018, Problem 17

Pre College Mathematics

## Try with Hints

First hint

Product of digits = \(n^2 – 15n – 27 = n(n – 15) – 27\)

so at first we observe when n=one digit ,two digit and 3 digit numbers…..

If n is a more than 2-digit number, say 3-digit number, then product has to be\(\leq 9 × 9 × 9 = 729\) but \((n(n – 15) – 27)\) is more than 729 (in fact it a more than 3-digit numbers for any 3-digit n). Hence, n can be either one-digit or 2-digit.

If n is 1-digit then \(n^2 – 15n – 27 = n\) \(\Rightarrow n\)= not an integer , so n is a two digit number

now we will observe for 2-digit numbers…..

Can you now finish the problem ……….

Second Hint

**For Two-digit numbers:**

As product is positive so n(n-15)-27>0\(\Rightarrow n\geq 17\)

Now two digit product is less than equal to 81

so \(n(n-15)-27\leq 1\)\(\Rightarrow n(n-15)\leq 108\) \(\Rightarrow n\leq 20\)

Therefore n can be \(17\),\(18\),\(19\) or \(20\)

Can you finish the problem……..

Final Step

**For \(n\)= \(17\),\(18\),\(19\) or \(20\)**

when n=17,then \(n(n-15)-27=7=1 \times 7\)

when n=18,then \(n(n-15)-27=27\neq 1\times 8\)

when n=19,then \(n(n-15)-27=49=1 \neq 9\)

when n=20,then \(n(n-15)-27=73=1 \neq 0\)

Therefore \(n\)=17

## Other useful links

- https://www.youtube.com/watch?v=wStgy7cRAfQ
- https://www.cheenta.com/radius-of-semicircle-amc-8-2013-problem-23/

Google