INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

April 12, 2020

Integer and Divisibility | B.Stat Objective | TOMATO 69

Try this TOMATO problem from I.S.I. B.Stat Entrance Objective Problem based on Integer and Divisibility.

Integer and Divisibility (B.Stat Objective problems)


Every integer of form \((n^{3}-n)(n-2)\) for n=3,4,..... is

  • divisible by 12 but not always divisible by 24
  • divisible by 6 but not always divisible by 12
  • divisible by 24 but not always divisible by 48
  • divisible by 9

Key Concepts


Logic

Integers

Divisibility

Check the Answer


Answer: divisible by 6 but not always divisible by 12

B.Stat Objective Question 69

Challenges and Thrills of Pre-College Mathematics by University Press

Try with Hints


First hint

\((n^{3}-n)(n-2)=n(n^{2}-1)(n-2)=(n-1)n(n+1)(n-2)\)

Second Hint

(n-1)n(n+1) is divisible by 3 and any two consecutive integers is divisible by 2 gcd(2,3)=1

Final Step

then 6|(n-1)n(n+1) and minimum (n-2)=1 for n=3,4,.... then \((n^{3}-n)(n-2)\) divisible by 6 but not always divisible by 12.

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter