Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Infinite Series- ISI B.MATH 2006 | Problem - 1

Problem

If $\sum_{n=1}^{\infty} \frac{1}{n^2} =\frac{{\pi}^2}{6}$ then $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ is equal to

(A) $\frac{{\pi}^2}{24}$ (B) $\frac{{\pi}^2}{8}$ (C) $\frac{{\pi}^2}{6}$ (D) $\frac{{\pi}^2}{3}$

Hint

Try to write the summation as sum of square of reciprocal of odd numbers and even numbers and take the advantage of the infinite sum

Solution

$\sum_{n=1}^{\infty} \frac{1}{n^2} =\frac{{\pi}^2}{6}$

$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{(2n)^2} + \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}= \frac{{\pi}^2}{6} $

$\Rightarrow \frac{1}{4}\sum_{n=1}^{\infty} \frac{1}{{n^2}} + \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{{\pi}^2}{6} $

we know $\sum_{n=1}^{\infty} \frac{1}{n^2} =\frac{{\pi}^2}{6}$

So from the above equation we get

Hence $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{{\pi}^2}{6} - \frac{{\pi}^2}{6\cdot4}$

$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{{\pi}^2}{8} $

So the correct answer is option B

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com