Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Inductance of a Toroid

Show that the inductance of a toroid of rectangular cross-section is given by $$ L=\frac{\mu_0N^2Hln(b/a)}{2\pi}$$ where (N) is the total number of turns, (a) is the inner radius, (b) is the outside radius and (H) is the height of the toroid.

Solution:

Toroid

Using the definition of the self inductance of a solenoid, we express (L) in terms of flux (\phi), (N) and (I):
$$ L=\frac{N\phi}{I}$$
We apply Ampere's law to a closed path of radius (a<r<b):
$$ \oint \vec{B}.\vec{dl}=B(2\pi r)$$ $$=\mu_0NI$$ $$ \Rightarrow B=\frac{\mu_0NI}{2\pi r}$$ We express the flux in a strip of height (H) and width (dr):
$$ d\phi=BHdr=\frac{\mu_0NIH}{2\pi}\int_{a}^{b}\frac{dr}{r}$$ $$ =\frac{\mu_0NIH}{2\pi}ln(\frac{b}{a})$$
Substitute for flux (\phi) in the equation (1) we obtain the expression for (L)
$$ L=\frac{\mu_0N^2Hln(b/a)}{2\pi}$$

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com