INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

January 5, 2014

IIT JAM 2013 Question Paper


Let A = </strong></span><span style="color: #000000;"><strong>{</strong></span><span style="color: #000000;"><strong>\left(\begin{array}{rrr}1&1&1\3&-1&1\1&5&3\end{array}\right)}
 and   V   be the vector space of all X\in \mathbb{R}^3 such that AX=0. then dim(V) is       (A)     0              (B)     1         (C)          2              (D)       3     


The value of  n  for which the divergence of  the function     \over\rightarrow{F}=\frac{\vec{r}}{|\vec{r}|^n}, \vec{r}=x\hat{i}+y\hat{j}+z\hat{k} ,|\vec{r}|\neq 0 , vanishes is
  (A)     1                    (B)  -1            (C)     3             (D)     -3


Let  A and B  be subset of  \mathbb{R}. which of the following  is NOT necessarily  true ?

(A)   ({A}\cap{B})^0 \subseteq{A}^0\cap{B}^0 (B)  {A}^0\cup{B}^0 \subseteq ({A}\cup{B})^0(C)  \bar{A}\cup \bar{B} \subseteq \overline{{A}\cup{B}} (D)  \bar{A}\cap \bar{B} \subseteq \overline{{A}\cap{B}} 


Let [x ]  denoted the greatest integer function  of x . the value of  \alpha  for which the function

f(n) = \frac{\sin[{-x}^2]}{[{-x}^2]}, & x\neq o \neq \alpha, & x = o is continuous   at x=0 is
(A)   0      (B)                sin(-1)       (C)         sin 1        (D)      1

 Let the function is f(x) be defined  by

f(n) = {e}^x, & x is rational {e}^1-x, & x is irrational for x in (0,1).then (A) f is continuous at every point in (0,1) (B) f is discontinuous at every point in (0,1) (C) f is discontinuous only at one point in (0,1) (D) f is continuous only at point in (0,1)

Q.6 The value of integra \int\limits\int_D\sqrt{x^2+y^2} dxdy, D={(x,y)\in \mathbb{R}^2 :X\leq{x}^2+{y}^2\leq 2x} is

   (A) 0             (B) \frac{7}{9}                   (C) \frac{14}{9}          (D) \frac{14}{9}


Let   p be the prime number .Let  G be the group of all 2*2 matrices over \mathbb{Z}_P with determinant  1 under matric mulliflication.then the order  G is  

  (A) (p-a) p(p+1)       (B) {p}^2(p-1)        (C) {p}^3      (D) {p}^2(p-1)+p

Q.7 Let x_n=\left ( {1}-\frac{1}{3} \right)^2 \left ( {1}-\frac{1}{6} \right)^2 \left ( {1}-\frac{1}{10} \right)^2..... \left ( {1}-\frac{1}{\frac{n(n-1)}{2}} \right)^2 , n\geq2 then \lim_{n to \infty} IS

(A)     \frac{1}{3}                                    (B)   \frac{1}{9}                   ( C)  \frac{1}{81}              (D)  0


Let v be the vector space of all 2*2 matrices over \mathbb{R}. consider the subspaces

 \[ W_1 =\left(\begin{array}{cc}a&-a\ c&d\end{array}\right):a,c,d \in \mathbb{R} \]  and \[ W_2 =\left(\begin{array}{cc}a&b\ -a&d\end{array}\right):a,b,d \in \mathbb{R}\] $ if m = \dim(W_1\cap W_2) and n=\dim(W_1+W_2) the pair (m,n) is

(A) (2,3)                    (B) (2,4)                    (C) (3,4)                      (D) (1,3)


Let wp be the real  vector space of all polynomials of degree at most n. Let D :wp_n \rightarrow wp_n-1 and T:wp_n \rightarrow wp_n+1 be the linear transformations defined by

D\left ( a_0+a_1 x +a_2 x^2 +.....+a_n x^n \right )=a_1 +2a_2 x+......+na_n x^{n-1}

T\left ( a_0+a_1 x +a_2 x^2 +.....+a_n x^n \right )=a_0 x +a_1 x^2+a_2 x^3+......+na_n x^{n+1}, respectively

if  A is the matrics representation of the transformation DT-TD : wp \rightarrow wp with respect to the standard basis of wp then the trace of A.

(A)      n                    (B)  -n                         (C)   (n+1)                       (D)   -(n+1)

                                                                                   FILL IN THE BLANK QUESTION
The equation of curve  satisfying  \sin y \frac{dy}{dx} = \cos y (1-x\cos y) and passing through the origin is
Let f be a continuously differentiable function  such that
\int_{0}^{2x^2}  f(t)dt = \( e^{cosx^2}\) for all  
   x\in(0,\infty ) the value of  f'(\pi) is
Let  u = \frac{y^2-x^2}{x^2y^2}, \frac{z^2-y^2}{y^2z^2} for x\neq o,y\neq 0,z\neq 0. Let w=(u,v) ,where f is a real valued function defined on \mathbb{R} having continuous  first order partial derivatives. the value of
x^3\frac{\partial w^3}{\partial x}x^3\frac{\partial y^3}{\partial x} +x^3\frac{\partial z^3}{\partial x}    at the point    (1,2,3)   is
The set of points at which the function  f(x,y) = x^4+y^4-x^2-y^2+1,(x,y) \in\mathbb{R}^2 attains local maximum is   
 Let C be the boundary of the region  in the first quadrant   by  y=1-x^2 ,x=0 and    y=0, oriented  counter-clockwise .the value of    \int_c(xy^2dx-x^2ydy ) is 
\[ f(x) = \begin{cases} {0}, & -1\leq x \leq 0\ {x}^4, & 0<x \leq 1\end{cases}\] .  if

 f(x)= \sum_{k=0}^{n}\frac{f^{(k)}f(0)}{k!}x^{k}\sum_{k=0}^{n}\frac{f^{(n+1)}f(xi)}{n+1!}x^{n+1}  is the taylor's formula for    f   about x=0 with maximum possible value of n , then the value of  xi for 0<x\leq 1 is


Let \vec{F}=2z\hat{i}+4x\hat{j}+5y\hat{k}, and let C be curve of intersection f the plane z=x+4 and the cylinder x^2+y^2 =4, oriented counter-clockwise .the value of o\int_c \vec{F}d\vec{r}  is


Let    f    and     g    be an function from \mathbb{R} {o,1}  to \mathbb{R}  defined by  f(x) = \frac{1}{x}

g(x)=\frac{x-1}{x} for x\in \mathbb{R} {0,1}.The smallest group of functions from \mathbb{R}{0,1}

to \mathbb{R}  containing   f   and g under composition  of functions  isomorphic  to


The orthogonal trajectory of the family of curves    \frac{x^2}{2}+{y}^2=c , which passes through (1,1 ) is


The function  to which the power series \sum_{n=1}^{\infty}{ (-1)}^{n+1} {n} {x}^{2n-2}  converges  is


Let   0<a\leq 1, s_1 = \frac{a}{2} and for n\in{N}, let s_{n+1} =\frac{1}{2}(s_n^2+a).

show that the sequence {{s_n}}  is convergent , and find  its limit.



\int_{\frac{1}{4}}^{1}  \int_{\sqrt{x-{x}^2}}^{\sqrt{x}}   \frac{x^2-y^2}{x^2}dydx

by  changing the  order of integration.


Find the general solution of the differential equation

x^2 \frac {d^3y}{dx^3}+x\frac {d^2y}{dx^2}-6\frac {dy}{dx}+6\frac {y}{x} = \( {\frac {x\lnx+1}{x^2}} \) , x>0


Let  S_1 be the hemisphere  x^2+y^2+z^2 =1 ,z >0 S_2 be a closed disc x^2+y^2 \leq 1    in the xy plane  . using gauss' divergent theorem,  evaluate  \int \int_{S} \vec{F}.d\vec{S},   where

\vec{F} = z^2 x \hat{i}  + \left ( \frac{y^3}{3}+\tan z \right )\hat{j} +( x^2 z + y^2)\hat{k}

and S=S_1 \cup S_2  also evaluate   \int \int_{s_1} \vec{F}.d\vec{S},



f(x ,y) = \begin{cases} \frac{2(x^3+y^3)}{x^2+2y}, ( x,y) \neq (0.0)\ 0 , (x,y)=(0,0)\end{cases} .
Show that first order partial derivatives of   f  with respect to  x  and y  exist at (0,0).also show that  f is not continuous  at (0,0).
Let A be an n*n diagonal  matrix  with characteristics polynomials  {(x-a )^p}{(x-b)^q} , where a and b are distincts real number. Let V  be the real vector space  of all n*n matrices  B such that  AB  =  BA  . Determine the dimension of   V .
Let A be an n*n symmetrics  matrics with n distinct   eigenvalues. prove that  there exists  an orthogonal matrics  P such that   AP  =   PD ,   where  D is a real diagonal matrix.
Let  K be a compact  subset  of \mathbb{R} with nonempty interior. prove that  K is of the form [a,b ]    or  of the form [a,b]  \cup I_n , where  {{ I_n}}   is a countable disjoint family of open intervals with end points  in K.
Let  f: [a,b] \rightarrow \mathbb{R} be a continuous  function such that  f is differentiable in (a,c) and (c,b) , a<c<b.
 if   \lim_{x=c} f'(x)  exists , then prove that   f is differentiable at c and f'(c) = \lim_{x=c} f'(x).
Let   G  be a finite group , and  let var\phi be an automorphism  of G such that var\phi (x)= x   if and only if  x=e , 
where   e  is the  identity element in G  prove that every g\in G can be represented as g= x^{-1} var\phi(x) 
for some x\in G . moreover  , if var\phi(var\phi(x))=x for every  x\in G , then show that   G    is abelian.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.