Understand the problem

Let G be a finite group with a normal subgroup H such that G/H has
order 7. Then \(G \cong\) H × G/H.
Source of the problem
TIFR GS 2018 Part A Problem 23
Topic
Group Theory
Difficulty Level
Medium
Suggested Book
Dummit and Foote

Start with hints

Do you really need a hint? Try it first!

This is also an interesting question.First of all we need to understand something in general.
If G is a finite group and H Δ G. So Consider the quotient group G/H.
Observe the following!
  • Lemma: If G ≈ H x G/H , then G/H is isomorphic to a normal subgroup of G. [Consider the projection homomorphism of G to (H,1) which contains G/H as the kernel.]
  • But in general G/H is not even a subgroup of G.
We will illustrate this by giving a simple example.
  • Naturally we took the group (Z,+) and we know all the subgroups of Z are nZ ,which are normal subgroups as Z is an abelian group.
  • Consider the quotient group Z/nZ.We know that this is not even isomorphic to a subgroup of Z.
  • Hence comes our counter-example.
  • G=Z, H=7Z. G/H =Z/7Z. But G is not isomorphic to 7Z x Z/7Z as Z/7Z is not isomorphic to a subgroup of Z.
  • Hence the answer is False.
  1. But we will give an example where the given statement is also False.
  • Consider the Dihedral group on n elements\(D_n\) as a subgroup of O(2) [The orthogonal group in R^2.] There is a homomorphism (Determinant) from O(2) → {-1,1},whose kernel is SO(2).
  • Hence consider the homomorphism from \(D_n\) → {-1,1} formed by the composition of inclusion homomorphism and the determinant homomorphism.
  • Observe that the Kernel of the above defined homomorphism is the Rotation Group of angle 2 π /n and the Quotient Group is the Reflection Group around a specific line(?)[Which is essentially Z/2Z.]
  • But observe that Dn is not isomorphic to Rotation Group of angle 2 π /n x Z/2Z .[As there is an interaction between rotation and reflection. \(ref.rot.ref=rot^{-1}\) .]
  1. Prove that the finite subgroups of the group of rigid body motion are only
  • Rotation Group of Angle 2 π /n for all n in N.
  • Dihedral Group \(D_n\)

Watch the video

Connected Program at Cheenta

College Mathematics Program

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.

Similar Problems

Problem on Inequality | ISI – MSQMS – B, 2018 | Problem 2a

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Data, Determinant and Simplex

This problem is a beautiful problem connecting linear algebra, geometry and data. Go ahead and dwelve into the glorious connection.

Problem on Integral Inequality | ISI – MSQMS – B, 2015

Try this problem from ISI MSQMS 2015 which involves the concept of Integral Inequality and real analysis. You can use the sequential hints provided to solve the problem.

Inequality Problem From ISI – MSQMS – B, 2017 | Problem 3a

Try this problem from ISI MSQMS 2017 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Problem on Natural Numbers | TIFR B 2010 | Problem 4

Try this problem of TIFR GS-2010 using your concepts of number theory and congruence based on natural numbers. You may use the sequential hints provided.

Definite Integral Problem | ISI 2018 | MSQMS- A | Problem 22

Try this problem from ISI-MSQMS 2018 which involves the concept of Real numbers, sequence and series and Definite integral. You can use the sequential hints

Inequality Problem | ISI – MSQMS 2018 | Part B | Problem 4

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality and Combinatorics. You can use the sequential hints provided.

Problem on Inequality | ISI – MSQMS – B, 2018 | Problem 4b

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Positive Integers Problem | TIFR B 201O | Problem 12

Try this problem of TIFR GS-2010 using your concepts of number theory based on Positive Integers. You may use the sequential hints provided.

CYCLIC GROUP Problem | TIFR 201O | PART A | PROBLEM 1

Try this problem from TIFR GS-2010 which involves the concept of cyclic group. You can use the sequential hints provided to solve the problem.