How Cheenta works to ensure student success?
Explore the Back-Story

Gradient, Divergence and Curl | IIT JAM 2014 | Problem 5

Join Trial or Access Free Resources

Try this problem from IIT JAM 2014 exam. It deals with calculating Gradient of a scalar point function, Divergence and curl of a vector point function.

$\nabla, \nabla ., \nabla \times$ Operators | IIT JAM 2014 | Problem 5

If $f(x,y,z)=x^2y+y^2z+z^2x,\quad \forall (x,y,z) \in \mathbb R$ and $\nabla=(\frac{\partial}{\partial x}\hat{i}+ \frac{\partial}{\partial y}\hat{j}+ \frac{\partial}{\partial z}\hat{k} )$ then the value of $\nabla.(\nabla \times \nabla f)+\nabla.(\nabla f)$ at $(1,1,1)$

  • $4$
  • $5$
  • $6$
  • $7$

Key Concepts

Vector Calculus

Scalar Point Function

Grad, Div , Curl

Check the Answer

Answer: $6$

IIT JAM 2014 , Problem 5

Try with Hints

Scalar Point Function : is a function which assigns a point$(x,y,z) \in \mathbb R^3$ to a scalar. Here $f$ is a scalar point function.

$\nabla=(\frac{\partial}{\partial x}\hat{i}+ \frac{\partial}{\partial y}\hat{j}+ \frac{\partial}{\partial z}\hat{k} ) $

Gradient of a function :($\nabla f) = (\frac{\partial f}{\partial x}\hat{i}+ \frac{\partial f}{\partial y}\hat{j}+ \frac{\partial f}{\partial z}\hat{k} ) $

Divergence of a function ($\nabla.\vec F$) =$ (\frac{\partial}{\partial x}\hat{i}+ \frac{\partial}{\partial y}\hat{j}+ \frac{\partial}{\partial z}\hat{k} ).\vec F $

Curl of a function ($\nabla\times \vec F$) =$ (\frac{\partial}{\partial x}\hat{i}+ \frac{\partial}{\partial y}\hat{j}+ \frac{\partial}{\partial z}\hat{k} )\times \vec F $

Now, $\nabla f = (2xy+z^2) \hat{i}+(2yz+x^2)\hat{j}+(2zx+y^2)\hat{k}$

Therefore $\nabla . (\nabla f)=\frac{\partial}{\partial x}(2xy+z^2)+ \frac{\partial}{\partial y}(2yz+z^2) + \frac{\partial}{\partial z}(2zx+y^2)$

$\quad= 2x+2y+2z $


$\nabla \times \nabla f = \begin{vmatrix} \hat i & \hat j & \hat k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy+z^2 & 2yz+x^2 & 2zx+y^2\end{vmatrix}= \vec 0$

Therefore $\nabla. (\nabla \times \nabla f)= 0$

then, $\nabla.(\nabla \times \nabla f)+\nabla.(\nabla f) = 2(x+y+z) \bigg|_{(1,1,1)}=6$

Subscribe to Cheenta at Youtube

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.