How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Gauss Trick in ISI Entrance

Problem - Gauss Trick (ISI Entrance)

Let's learn Gauss Trick for ISI Entrance.

If k is an odd positive integer, prove that for any integer $ \mathbf{ n \ge 1 , 1^k + 2^k + \cdots + n^k } $ is divisible by $ \mathbf{ \frac {n(n+1)}{2} } $

Key Concepts

Gauss Trick

Factoring Binomial


From I.S.I. Entrance and erstwhile Soviet Olympiad.

Test of Mathematics at 10+2 Level by East West Press, Subjective Problem 31

Challenges and Thrills of Pre College Mathematics

Try the first hint

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.