How Cheenta works to ensure student success?
Explore the Back-Story
Problems and Solutions from CMI Entrance 2022.  Learn More 

Gauss Trick in ISI Entrance

Problem - Gauss Trick (ISI Entrance)


Let's learn Gauss Trick for ISI Entrance.

If k is an odd positive integer, prove that for any integer $ \mathbf{ n \ge 1 , 1^k + 2^k + \cdots + n^k } $ is divisible by $ \mathbf{ \frac {n(n+1)}{2} } $

Key Concepts


Gauss Trick

Factoring Binomial

Source


From I.S.I. Entrance and erstwhile Soviet Olympiad.

Test of Mathematics at 10+2 Level by East West Press, Subjective Problem 31

Challenges and Thrills of Pre College Mathematics

Try the first hint


Subscribe to Cheenta at Youtube


Problem - Gauss Trick (ISI Entrance)


Let's learn Gauss Trick for ISI Entrance.

If k is an odd positive integer, prove that for any integer $ \mathbf{ n \ge 1 , 1^k + 2^k + \cdots + n^k } $ is divisible by $ \mathbf{ \frac {n(n+1)}{2} } $

Key Concepts


Gauss Trick

Factoring Binomial

Source


From I.S.I. Entrance and erstwhile Soviet Olympiad.

Test of Mathematics at 10+2 Level by East West Press, Subjective Problem 31

Challenges and Thrills of Pre College Mathematics

Try the first hint


Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
magic-wand