Try this beautiful problem from Pre-RMO, 2019 based on Functions and Equations.
Let f(x) = $x^{2}+ax+b$, if for all non zero real x, f(x+$\frac{1}{x})$=f(x)+f($\frac{1}{x}$) and the roots of f(x)=0 are integers, find the value of $a^{2}+b^{2}$.
Functions
Algebra
Polynomials
But try the problem first...
Answer: 13.
Pre-RMO, 2019
Functional Equation by Venkatchala .
First hint
f(x+$\frac{1}{x})$=f(x)+f($\frac{1}{x}$)
Second hint
then $(x+\frac{1}{x})^{2}+a(x+\frac{1}{x})+b$=$x^{2}+ax+b+\frac{1}{x^{2}}+\frac{a}{x}+b$ then b=2, product of roots is 2 then roots are (1,2),(-1,-2) and a=3or-3
Final Step
then $a^{2}+b^{2}$=4+9=13
Try this beautiful problem from Pre-RMO, 2019 based on Functions and Equations.
Let f(x) = $x^{2}+ax+b$, if for all non zero real x, f(x+$\frac{1}{x})$=f(x)+f($\frac{1}{x}$) and the roots of f(x)=0 are integers, find the value of $a^{2}+b^{2}$.
Functions
Algebra
Polynomials
But try the problem first...
Answer: 13.
Pre-RMO, 2019
Functional Equation by Venkatchala .
First hint
f(x+$\frac{1}{x})$=f(x)+f($\frac{1}{x}$)
Second hint
then $(x+\frac{1}{x})^{2}+a(x+\frac{1}{x})+b$=$x^{2}+ax+b+\frac{1}{x^{2}}+\frac{a}{x}+b$ then b=2, product of roots is 2 then roots are (1,2),(-1,-2) and a=3or-3
Final Step
then $a^{2}+b^{2}$=4+9=13