What is the NO-SHORTCUT approach for learning great Mathematics?

Learn MoreFor Students who are passionate for Mathematics and want to pursue it for higher studies in India and abroad.

Contents

[hide]

Try this beautiful problem from PRMO, 2014 based on Finding side of Triangle.

Let XOY be a triangle with angle XOY=90 degrees. Let M and N be the midpoints of the legs OX and OY, respectively. Suppose that XN=19 and YM=22. what is XY?

- \(28\)
- \(26\)
- \(30\)

Geometry

Triangle

Pythagoras

But try the problem first...

Answer:\(26\)

Source

Suggested Reading

PRMO-2014, Problem 15

Pre College Mathematics

First hint

Given that \(\angle XOY=90^{\circ}\) .Let M and N be the midpoints of the legs OX and OY, respectively, and that XN=19 and YM=22. Now \(\triangle XON\) & \(\triangle MOY\) are Right angle Triangle. Use Pythagoras theorem .......

Can you now finish the problem ..........

Second Step

Let \(XM=MO=p\) and \(ON=NY=q\).Now using Pythagoras theorm on \(\triangle XON\) & \(\triangle MOY\) we have...

\(OX^2 +ON^2=XN^2\) \(\Rightarrow 4p^2 +q^2=19^2\) \(\Rightarrow 4p^2 +q^2=361\)...........(1) and \(OM^2 +OY^2=MY^2\) \(\Rightarrow p^2 +4q^2=22^2\) \(\Rightarrow p^2 +4q^2=484\)......(2)

Final Step

Now Adding (1)+(2)=\((4p^2 +q^2=361)\)+\((p^2 +4q^2=484\) \(\Rightarrow 5(p^2+q^2)=845\) \(\Rightarrow (p^2+q^2)=169\) \(\Rightarrow 4(p^2+q^2)=676\) \(\Rightarrow (OX)^2+(OY)^2=(26)^2\) \(\Rightarrow (XY)^2=(26)^2\) \(\Rightarrow XY=26\).

- https://www.youtube.com/watch?v=pVg3MHSyt08
- https://www.cheenta.com/radius-of-semicircle-amc-8-2013-problem-23/

What to do to shape your Career in Mathematics after 12th?

From the video below, let's learn from Dr. Ashani Dasgupta (a Ph.D. in Mathematics from the University of Milwaukee-Wisconsin and Founder-Faculty of Cheenta) how you can shape your career in Mathematics and pursue it after 12th in India and Abroad. These are some of the key questions that we are discussing here:

- What are some of the best colleges for Mathematics that you can aim to apply for after high school?
- How can you strategically opt for less known colleges and prepare yourself for the best universities in India or Abroad for your Masters or Ph.D. Programs?
- What are the best universities for MS, MMath, and Ph.D. Programs in India?
- What topics in Mathematics are really needed to crack some great Masters or Ph.D. level entrances?
- How can you pursue a Ph.D. in Mathematics outside India?
- What are the 5 ways Cheenta can help you to pursue Higher Mathematics in India and abroad?

Cheenta has taken an initiative of helping College and High School Passout Students with its "Open Seminars" and "Open for all Math Camps". These events are extremely useful for students who are really passionate for Mathematic and want to pursue their career in it.

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google