Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Fair coin Problem | AIME I, 1990 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1990 based on fair coin.

Fair Coin Problem - AIME I, 1990


A fair coin is to be tossed 10 times. Let i|j, in lowest terms, be the probability that heads never occur on consecutive tosses, find i+j.

  • is 107
  • is 73
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Combinatorics

Algebra

Check the Answer


Answer: is 73.

AIME I, 1990, Question 9

Elementary Algebra by Hall and Knight

Try with Hints


First hint

5 tails flipped, any less,

by Pigeonhole principle there will be heads that appear on consecutive tosses

Second Hint

(H)T(H)T(H)T(H)T(H)T(H) 5 tails occur there are 6 slots for the heads to be placed but only 5H remaining, \({6 \choose 5}\) possible combination of 6 heads there are

Final Step

\(\sum_{i=6}^{11}{i \choose 11-i}\)=\({6 \choose 5} +{7 \choose 4}+{8 \choose 3}+{9 \choose 2} +{10 \choose 1} +{11 \choose 0}\)=144

there are \(2^{10}\) possible flips of 10 coins

or, probability=\(\frac{144}{1024}=\frac{9}{64}\) or, 9+64=73.

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com