# Understand the problem

Let $O$ be the circumcenter and $G$ be the centroid of a triangle $ABC$. If $R$ and $r$ are the circumcenter and incenter of the triangle, respectively,
prove that $$OG \leq \sqrt{ R ( R - 2r ) } .$$

Balkan MO 1996

Geometry
Easy
##### Comments
Let $I$ be the incentre. Euler’s theorem says that $OI^2=R(R-2r)$. Hence the result actually proves that $OG\le OI$.

# Start with hints

Do you really need a hint? Try it first!

The distance $OG$ is easily computable from standard formulae. For example, one can use complex numbers by assuming that $O=0$ and $|A|=|B|=|C|=R$.
The centroid is given by $\frac{A+B+C}{3}$. Hence $OG^2=\frac{|A+B+C|^2}{9}=\frac{(A+B+C)(\overline{A}+\overline{B}+\overline{C})}{9}=\frac{3R^2+A\overline{B}+A\overline{C}+B\overline{A}+B\overline{C}+C\overline{A}+C\overline{B}}{9}=R^2-\frac{(2R^2-A\overline{B}-B\overline{A})+(2R^2-A\overline{C}-C\overline{A})+(2R^2-B\overline{C}-C\overline{B})}{9}=R^2-\frac{|A-B|^2+|B-C|^2+|C-A|^2}{9}=R^2-\frac{a^2+b^2+c^2}{9}$.
Show that $R(R-2r)=R^2-\frac{abc}{a+b+c}$.
Combining all the hints, the problem reduces to proving that $(a^2+b^2+c^2)(a+b+c)\ge 9abc$. This follows from $\frac{a^2+b^2+c^2}{3}\ge 3(abc)^{\frac{2}{3}}$ and $\frac{a+b+c}{3}\ge 3(abc)^{\frac{1}{3}}$.

# Connected Program at Cheenta

#### Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.