Understand the problem

How many integers between $100$ and $999$, inclusive, have the property that some permutation of its digits is a multiple of $11$ between $100$ and $999?$ ( For example, both $121$ and $211$ have this property. )

Source of the problem
American Mathematics Competition 
Topic
Enumerative Combinatorics 

Difficulty Level
7/10

Suggested Book
Introductory Combinatorics by Richard Brualdi

Start with hints

So, well have a long look at the problem. With a little bit of thought, you might even crack this without proceeding any further !

Stuck ?…No worries. Try asking yourself – How many numbers between 100-999 are exactly divisible by 11 ? This is quite easy to figure out. 
What is the largest number in the range divisible by 11 ? Easy, 990.
How about the smallest such number ? Yeah, 110.
So, the number of integers in the range visible by 11 = ( ( 990110 ) / 11 ) + 1 = 81.
Now, how about you try taking things ahead from here onwards ?

Now see, 81 numbers are divisible by 11 in the range, as we just saw. All that’s left is to find out the permutations of these. Wait ! That’s simple, isn’t it ? Yes, 81 x 3 = 243. At this very juncture, ask yourself why. If you find out the answer to this “why”, you can might as well say you’ve gone far enough to solve the problem…  

    Let’s answer the “why” here. Say, we have a 3-digit number, abc. Now, ideally we would have had 6 permutations ( 3 ! simply ) for each such abc. But here’s a catch ! If abc is divisible by 11, so is cba.…!!! Yeah, that’s it. So, basically if we multiply by 6, we are accounting for same kind of permutations twice. So basically, each multiple of 11 in the range has it’s ( 6/2 ) = 3 permutations, that we are bothered about. This clearly justifies the fact that we can at maximum have 81 x 3 = 243 numbers in our desired solution set. But wait ? Why do I say, at maximum ? So…have we overcounted ? Yeah,we have. Why don’t you think about it…?          

Well, as you might have felt, we did overcount. We did not account for the numbers where 0 could be one of the digits. We overcounted cases where the middle digit of the number is 0 and the last digit is 0. So, what are these ? Let’s find them out. In how many of the numbers is the last digit 0 ? That’s easy…they have a pattern. It goes like 110, 220,….990. That makes it 9. Now, in how many of those 243 numbers that we are bothered about, does ‘0’ occur as a middle digit ? With a little bit of insight, you’d find out they are 803, 902, 704, 605. And well their permutations too. So that makes it 4 x 2 = 8.  So, in total, 9+8 = 17 elements have been overcounted. 

 Subtract that from 243, ( 24317 ) = 226, that’s your answer.

Connected Program at Cheenta

AMC Training Camp

One on One class for every student. Plus group sessions on advanced problem solving. 

A  special training program for American Mathematics Contest.

Similar Problems

Logarithm and Equations | AIME I, 2012 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2015 based on Logarithm and Equations.

Cross section of solids and volumes | AIME I 2012 | Question 8

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on Cross section of solids and volumes.

Angles of Star | AMC 8, 2000 | Problem 24

Try this beautiful problem from GeometryAMC-8, 2000 ,Problem-24, based triangle. You may use sequential hints to solve the problem.

Problem based on Integer | PRMO-2018 | Problem 6

Try this beautiful problem from Algebra based on Quadratic equation from PRMO 8, 2018. You may use sequential hints to solve the problem.

Area of a Triangle | AMC-8, 2000 | Problem 25

Try this beautiful problem from Geometry: Area of the triangle from AMC-8, 2000, Problem-25. You may use sequential hints to solve the problem.

Unit digit | Algebra | AMC 8, 2014 | Problem 22

Try this beautiful problem from Algebra about unit digit from AMC-8, 2014. You may use sequential hints to solve the problem.

Number counting | ISI-B.stat Entrance | Objective from TOMATO

Try this beautiful problem Based on Number counting .You may use sequential hints to solve the problem.

Trapezium | Geometry | PRMO-2018 | Problem 5

Try this beautiful problem from Geometry based on Trapezium from PRMO , 2018. You may use sequential hints to solve the problem.

Mixture | Algebra | AMC 8, 2002 | Problem 24

Try this beautiful problem from Algebra based on mixture from AMC-8, 2002.. You may use sequential hints to solve the problem.

Probability Problem | AMC 8, 2016 | Problem no. 21

Try this beautiful problem from Probability from AMC-8, 2016 Problem 21. You may use sequential hints to solve the problem.