Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Electric Field of a Charged Hemisphere

A total charge (q) is spread uniformly over the inner surface of a non-conducting hemispherical cup of inner radius (a). Calculate the electric field.

Discussion:

Consider a circular strip symmetric about (z-axis) of radius (r) and width (ad\theta)
The charge on the strip is $$ dq=q\frac{2\pi r ad\theta}{2\pi a^2}=\frac{qr d\theta}{a}=q sin\theta d\theta$$
(a) At the centre of the hemisphere, the (x-component) of the field will be cancelled for reasons of symmetry. The entire field will be contributed by the (z-component) alone.
$$ dE=dE_z= \frac{q sin\theta d\theta cos\theta}{4\pi\epsilon_0 a^2}
$$
Therefore, $$ E=\int dE_z=\frac{q}{4\pi\epsilon_0 a^2}\int_{0}^{\pi/2}sin \theta cos\theta d\theta =\frac{q}{8\pi \epsilon_0 a^2}$$

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com