INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

March 27, 2020

Eigen Value of a matrix | IIT JAM 2017 | Problem 58

Try this problem from IIT JAM 2017 exam (Problem 58) and know how to evaluate Eigen value of a Matrix.

Eigen value of a Matrix | IIT JAM 2017 | Problem 58


Let $\alpha, \beta, \gamma, \delta$ be the eigenvalues of the matrix
$$
\begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{bmatrix}
$$
Then find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$

Key Concepts


Linear Algebra

Matrix

Eigen Values

Check the Answer


Answer: $6$

IIT JAM 2017 , Problem 58

Try with Hints


Characteristic Equation of a matrix $A$ of order $n$ is defined by $|A-xI|=0$, where $x$ is scalar and $I$ is the identity matrix of order $n$.

The roots of the characteristic equation are called the Eigen Values of that matrix.

Now it is easy. Give it a try.

Let

$$
A=\begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{bmatrix}
$$

Then its characteristic equation is $|A-xI|=0$ for some scalar $x$ and $I$ the identity matrix of order $4$

i.e., $
\begin{vmatrix}
-x & 0 & 0 & 0 \\
1 & -x & 0 & -2 \\
0 & 1 & -x & 1 \\
0 & 0 & 1 & 2-x
\end{vmatrix}
=0$

$
\Rightarrow -x\begin{vmatrix}
-x & 0 & -2 \\
1 & -x & 1 \\
0 & 1 & 2-x
\end{vmatrix}
=0 $

$\Rightarrow -x[-x\{(-x)(2-x)\}-1]-2(1-0)]=0$

$\Rightarrow x^{4}-2 x^{3}-x^{2}+2 x=0$

$\Rightarrow x(x^{3}-2 x^{2}-x+2)=0$

$\Rightarrow x(x-1)(x-2)(x+1)=0$

Then the eigen values are : $0,1,-1,2$

Then, $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2} =0^2+1^2+(-1)^2+2^2=6$ [ANS]

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com