INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More

# Differentiability and Uniform Continuity

Problem: Every differentiable function f:  (0, 1) --> [0, 1] is uniformly continuous.

Discussion;

False

Note that every differentiable function f: [0,1] --> (0, 1) is uniformly continuous by virtue of uniform continuity theorem which says every continuous map from closed bounded interval to R is uniformly continuous. However in this case the domain is an open interval.

We can easily find counter example such as $f(x) = \sin ( \frac {1}{x} )$. Intuitively speaking the function oscillates (between -1 and 1) faster and faster as we get close to x = 0. Hence we can get two arbitrarily close values of x such that their functional value's difference equals a particular number (say 1) therefore exceeding any $\epsilon < 1$

An interesting discussion:

### One comment on “Differentiability and Uniform Continuity”

This site uses Akismet to reduce spam. Learn how your comment data is processed.

### Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
HALL OF FAMESUPER STARSBOSE OLYMPIADBLOG
CAREERTEAM
support@cheenta.com