How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Differentiability and Uniform Continuity

Problem: Every differentiable function f:  (0, 1) --> [0, 1] is uniformly continuous.



Note that every differentiable function f: [0,1] --> (0, 1) is uniformly continuous by virtue of uniform continuity theorem which says every continuous map from closed bounded interval to R is uniformly continuous. However in this case the domain is an open interval.

We can easily find counter example such as f(x) = \sin ( \frac {1}{x} ) . Intuitively speaking the function oscillates (between -1 and 1) faster and faster as we get close to x = 0. Hence we can get two arbitrarily close values of x such that their functional value's difference equals a particular number (say 1) therefore exceeding any \epsilon < 1

An interesting discussion:

differentiability and uniform continuity

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.