Categories
Algebra Arithmetic Calculus I.S.I. and C.M.I. Entrance ISI Entrance Videos

Derivative Problem | TOMATO BStat Objective 764

Try this TOMATO problem from I.S.I. B.Stat Entrance Objective Problem based on Surface area. You may use sequential hints.

Try this problem from I.S.I. B.Stat Entrance Objective Problem based on Derivative.

Derivative Problem (B.Stat Objective Question )


If y=\(3^\frac{sinax}{cosbx}\), then \(\frac{dy}{dx}\) is

  • \(3^\frac{sinax}{cosbx}\frac{acosaxcosbx-bsinaxsinbx}{cos^{2}bx}log3\)
  • \(3^\frac{sinax}{cosbx}\frac{acosaxcosbx+bsinaxsinbx}{cos^{2}bx}log3\)
  • \(3^\frac{sinax}{cosbx}log3\)
  • \(3^\frac{sinax}{cosbx}\)

Key Concepts


Equation

Derivative

Algebra

Check the Answer


But try the problem first…

Answer:\(3^\frac{sinax}{cosbx}\frac{acosaxcosbx+bsinaxsinbx}{cos^{2}bx}log3\)

Source
Suggested Reading

B.Stat Objective Problem 764

Challenges and Thrills of Pre-College Mathematics by University Press

Try with Hints


First hint

\(y=3^\frac{sinax}{cosbx}\)

or, \(\frac{dy}{dx}\)=\(3^{\frac{sinax}{cosbx}}log_{e}{3}\frac{d}{dx}\frac{sinax}{cosbx}\)

Second Hint

or, \(\frac{dy}{dx}\)=\(3^{\frac{sinax}{cosbx}}log_{e}{3}{\frac{cosbxcosaxa-sinax(-sinbx)b}{cos^{2}bx}}\)

Final Step

or, \(3^\frac{sinax}{cosbx}\frac{acosaxcosbx+bsinaxsinbx}{cos^{2}bx}log3\)

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.