INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

June 7, 2020

Derivative Problem | TOMATO BStat Objective 764

Try this problem from I.S.I. B.Stat Entrance Objective Problem based on Derivative.

Derivative Problem (B.Stat Objective Question )


If y=\(3^\frac{sinax}{cosbx}\), then \(\frac{dy}{dx}\) is

  • \(3^\frac{sinax}{cosbx}\frac{acosaxcosbx-bsinaxsinbx}{cos^{2}bx}log3\)
  • \(3^\frac{sinax}{cosbx}\frac{acosaxcosbx+bsinaxsinbx}{cos^{2}bx}log3\)
  • \(3^\frac{sinax}{cosbx}log3\)
  • \(3^\frac{sinax}{cosbx}\)

Key Concepts


Equation

Derivative

Algebra

Check the Answer


Answer:\(3^\frac{sinax}{cosbx}\frac{acosaxcosbx+bsinaxsinbx}{cos^{2}bx}log3\)

B.Stat Objective Problem 764

Challenges and Thrills of Pre-College Mathematics by University Press

Try with Hints


First hint

\(y=3^\frac{sinax}{cosbx}\)

or, \(\frac{dy}{dx}\)=\(3^{\frac{sinax}{cosbx}}log_{e}{3}\frac{d}{dx}\frac{sinax}{cosbx}\)

Second Hint

or, \(\frac{dy}{dx}\)=\(3^{\frac{sinax}{cosbx}}log_{e}{3}{\frac{cosbxcosaxa-sinax(-sinbx)b}{cos^{2}bx}}\)

Final Step

or, \(3^\frac{sinax}{cosbx}\frac{acosaxcosbx+bsinaxsinbx}{cos^{2}bx}log3\)

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter