INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

November 26, 2017

Degrees of Freedom for Gas Molecules | Problem and Solution

When a gas expands adiabatically, its volume is doubled while its absolute temperature is decreased by a factor (1.32). Compute the number of degrees of freedom for the gas molecules.


The number of degrees can be found from the relation $$ f=\frac{2}{\gamma-1}$$
We can find (\gamma) from the adiabatic relation,$$ T_2V_2^{\gamma-1}= T_1V_1^{\gamma-1} $$
$$( \frac{V_2}{V_1})^{\gamma-1}=\frac{T_1}{T_2}=1.32$$
$$ 2^{\gamma-1}=1.32$$
where $$ \gamma=1+\frac{log 1.32}{log2}=1.4$$
The number of degrees of freedom $$ f=\frac{2}{1.4-1}=5$$

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.