How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Degrees of Freedom for Gas Molecules | Problem and Solution

When a gas expands adiabatically, its volume is doubled while its absolute temperature is decreased by a factor (1.32). Compute the number of degrees of freedom for the gas molecules.


The number of degrees can be found from the relation $$ f=\frac{2}{\gamma-1}$$
We can find (\gamma) from the adiabatic relation,$$ T_2V_2^{\gamma-1}= T_1V_1^{\gamma-1} $$
$$( \frac{V_2}{V_1})^{\gamma-1}=\frac{T_1}{T_2}=1.32$$
$$ 2^{\gamma-1}=1.32$$
where $$ \gamma=1+\frac{log 1.32}{log2}=1.4$$
The number of degrees of freedom $$ f=\frac{2}{1.4-1}=5$$

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.