How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# Understand the problem

Let P be a regular 12 sided polygon. How many right triangles can be formed by the vertices of P?

# Tutorial Problems... try these before watching the video.

[/et_pb_text][et_pb_text _builder_version="4.0.7" text_font_size="18px" custom_padding="20px|30px|20px|30px|false|false" hover_enabled="0" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset1"]1. Show that a regular 12 sided polygon must be cyclic. 2. Show that hypotenuse of any right triangle, whose vertices are vertices of the above polygon, must be diameter of the circle (in which the polygon is inscribed) You may send solutions to support@cheenta.com. Though we usually look into internal students work, we will try to give you some feedback. [/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

# Subscribe to Cheenta's youtube channel

[/et_pb_text][et_pb_code _builder_version="4.0.6"]

# Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="10" image_placement="left" use_text_overlay="on" _builder_version="4.0.6"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]