  How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# Coordinate Geometry Problem | AIME I, 2009 Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2009 based on Coordinate Geometry.

## Coordinate Geometry Problem - AIME 2009

Consider the set of all triangles OPQ where O  is the origin and P and Q are distinct points in the plane with non negative integer coordinates (x,y) such that 41x+y=2009 . Find the number of such distinct triangles whose area is a positive integer.

• is 107
• is 600
• is 840
• cannot be determined from the given information

### Key Concepts

Algebra

Equations

Geometry

AIME, 2009, Question 11

Geometry Revisited by Coxeter

## Try with Hints

First hint

let P and Q be defined with coordinates; P=($x_1,y_1)$ and Q($x_2,y_2)$. Let the line 41x+y=2009 intersect the x-axis at X and the y-axis at Y . X (49,0) , and Y(0,2009). such that there are 50 points.

here [OPQ]=[OYX]-[OXQ] OY=2009 OX=49 such that [OYX]=$\frac{1}{2}$OY.OX=$\frac{1}{2}$2009.49 And [OYP]=$\frac{1}{2}$$2009x_1$  and [OXQ]=$\frac{1}{2}$(49)$y_2$.

Second Hint

2009.49 is odd, area OYX not integer of form k+$\frac{1}{2}$ where k is an integer

Final Step

41x+y=2009 taking both 25  $\frac{25!}{2!23!}+\frac{25!}{2!23!}$=300+300=600.

.

# Knowledge Partner  