How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Complex Numbers and Triangles | AIME I, 2012 | Question 14

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on complex numbers and triangles.

Complex numbers and triangles - AIME I, 2012

Complex numbers a,b and c are zeros of a polynomial P(z)=\(z^{3}+qz+r\) and \(|a|^{2}+|b|^{2}+|c|^{2}\)=250, The points corresponding to a,b,.c in a complex plane are the vertices of right triangle with hypotenuse h, find \(h^{2}\).

  • is 107
  • is 375
  • is 840
  • cannot be determined from the given information

Key Concepts

Complex Numbers



Check the Answer

Answer: is 375.

AIME I, 2012, Question 14

Complex Numbers from A to Z by Titu Andreescue

Try with Hints

First hint

here q ,r real a real b,c complex and conjugate pair x+iy,x-iy then a+b+c=0 gives a=-2x and by given condition a-x=y then y=-3x

Second Hint

\(|a|^{2}+|b|^{2}+|c|^{2}\)=250 then 24\(x^{2}\)=250

Final Step

h distance between b and c h=2y=-6x then \(h^{2}=36x^{2}\)=36\(\frac{250}{24}\)=375.

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.