Understand the problem

A new flag of ISI club is to be designed with 5 vertical strips using some or all the four colours : green , naroon , red and yellow . In how many ways this can be done  so that no two adjacent strips have the same colour ? 
Source of the problem
Sample Questions ( MMA ) :2019 
Topic
Combinatorics 
Difficulty Level
Medium 
Suggested Book
Schaum’s outline of combinatorics by  Balakrishnan 

Start with hints

Do you really need a hint? Try it first!

This is an application of multiplication property in combinatorics. The rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the idea that if there are a ways of doing something and b ways of doing another thing, then there are a · b ways of performing both actions.

ISI club has 5 vertical strips . We have to colour them using 4 colours . So , the first strip can be coloured in 4 ways . WLOG we take it to be green . Can the second strip be coloured green ?  No  ! Right ? 
So , we have to choose the second strip from rest of the colours . [ Because two adjacent strip has same colour ] 
Similarly , third strip can be coloured into 3 ways , fourth strips can be coloured into 3 ways and fifth strips can be coloured into 3 ways .[ We have to exclude the colour of the second one]  Therefore , the total number  of probabilities are – \(3^4\) x 4 = 324 

Watch the video

Connected Program at Cheenta

College Mathematics Program

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.

Similar Problems

Problem on Inequality | ISI – MSQMS – B, 2018 | Problem 2a

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Data, Determinant and Simplex

This problem is a beautiful problem connecting linear algebra, geometry and data. Go ahead and dwelve into the glorious connection.

Problem on Integral Inequality | ISI – MSQMS – B, 2015

Try this problem from ISI MSQMS 2015 which involves the concept of Integral Inequality and real analysis. You can use the sequential hints provided to solve the problem.

Inequality Problem From ISI – MSQMS – B, 2017 | Problem 3a

Try this problem from ISI MSQMS 2017 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Problem on Natural Numbers | TIFR B 2010 | Problem 4

Try this problem of TIFR GS-2010 using your concepts of number theory and congruence based on natural numbers. You may use the sequential hints provided.

Definite Integral Problem | ISI 2018 | MSQMS- A | Problem 22

Try this problem from ISI-MSQMS 2018 which involves the concept of Real numbers, sequence and series and Definite integral. You can use the sequential hints

Inequality Problem | ISI – MSQMS 2018 | Part B | Problem 4

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality and Combinatorics. You can use the sequential hints provided.

Problem on Inequality | ISI – MSQMS – B, 2018 | Problem 4b

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Positive Integers Problem | TIFR B 201O | Problem 12

Try this problem of TIFR GS-2010 using your concepts of number theory based on Positive Integers. You may use the sequential hints provided.

CYCLIC GROUP Problem | TIFR 201O | PART A | PROBLEM 1

Try this problem from TIFR GS-2010 which involves the concept of cyclic group. You can use the sequential hints provided to solve the problem.