• LOGIN
  • No products in the cart.

Please contribute problems and solutions in the comments.

Objective

  1. For all finite word strings comprising A and B only, A string is arranged by dictionary order. eg. ABAA
  2.  For any arbitrary string w, with another string y<w, there cannot always exist a string x, w<x<y
  3. There is an infinite set of strings a1,a2… such that ai<a(i+1) for all i.
  4. There are fewer than 50 strings less than AABBABBA
  • Ten people are seated in a circle. One person contributes five hundred rupees. Every person contributes the average of the money contributed by his two neighbors.
    1. What is the sum contributed by all the ten?
      1. >5000
      2. < 5000
      3. .=5000
      4. Cannot say.
    2. 2. What is maximum contribution by an individual?
      1. 500
      2. =500
      3. none
  • There are 4 bins and 4 balls. Let \(P(E_i)\) be the probability of first n balls falling into distinct bins.
    Find

    1. \(P(E_4) \)
    2. \(P(E_4|E_3) \)
    3. \(P(E_4|E_2) \)
    4. \(P(E_3|E_4) \)
  • Let \(f(x) = \sin^{-1} (\sin (\pi x)) \). Find
    1. f(2.7).
    2. f'(2.7)
    3. integral from 0 to 2.5 of f(x)dx
    4. value of x for which f'(x) does not exist
  • In some country number plates are formed by 2 digits and 3 vowels. It is called confusing if it has both digit 0 and vowel o.
    1. How many such number plates exist?
    2. How many are not confusing
  • A number is called magical if a and b are not coprime to n, a+b is also not coprime to n. For example, 2 is magical as all even numbers are not coprime to 2. Find whether the following numbers are magical
    1. 129
    2. 128
    3. 127
    4. 100
  • a) In the expansion of \((1+ \sqrt 2)^10 = \sum_0^10 C_i (\sqrt 2)^i \), the term with maximum value is
    b) If \((1+\sqrt 2)^n = p_n+q_n \sqrt 2 \) , where \(p_n \) and \(q_n \) are integers, \(\lim_{ n to \infty} \frac {p_n}{q_n} ^{10} \) is

Subjective

  1. In a circle, AB be the diameter.. X is an external point. Using straight edge construct a perpendicular to AB from X
    1. If X is inside the circle then how can this be done
      Discussion
  2. a be a positive integer from set {2, 3, 4, … 9999}. Show that there are exactly two positive integers in that set such that 10000 divides a*a-1.
    1. Put \(n^2 – 1 \) in place of 9999. How many positive integers a exists such that \(n^2 \) divides a(a-1)
      Discussion
  3. P(x) is a polynomial. Show that \(\displaystyle { \lim_{t to \infty} \frac{P(t)} {e^t} }\) exists. Also show that the limit does not depend on the polynomial.
  4. We define function \(\displaystyle { f(x) = \frac {e^{\frac{-1}{x}}}{x}} \) when x< 0; f(x) = 0 if x=0 and \(\displaystyle { f(x) = \frac {e^{\frac{-1}{x}}}{x}} \) when x > 0 . Show that the function is continuous and differentiable. Find limit at x =0
  5. p,q,r any real number such that \(p^2 + q^2 + r^2 = 1 \)
    1. Show that \(3*(p^2 q + p^2 r) + 2(r^3 +q^3) \le 2 \)
    2. Suppose \(f(p,q,r) = 3(p^2 q + p^2 r ) + 2(r^3 +q^3) \) .  At what values (p,q, r) does f(p,q,r) maximizes and minimizes?
  6. Let g(n) is GCD of (2n+9) and \(6n^2+11n-2 \) then then find greatest value of g(n)
May 18, 2015

62 comments

  1. soln of q.no.-1
    Let 2 line drawn meeting A to X and B to X in P and Q at the pepheri of circle respectively.Now join A to Q and B to P.As AB is diameter of circle so angleAPB and angleBQA are 90*.So if we extend the linea AQ and BP,Let it meets at point O ie ORTHOCENTRE of triangle ABX.Now join X to O ie automatically perpendicular to AB.
    HENCE SOLVED

  2. Hint of q.no.-2
    use Chinese remainder theorem.

  3. Hint q.no.-3
    as exponential function is more increasing then polynomial functin.
    See derivative of both thats why any polynomial fucnyion upon exponential like e^x as x->infinity is 0 so it is independent of any particular polynomial.

  4. q.no.-4
    it done ab-initio method or basics principle of limit,continuty and derivability

  5. one of the today cmi prob-
    let g(n) is GCD of (2n+9) and 6n^2+11n-2 then then find largest +ve integer of g(n)
    something like that

  6. Part A
    Ten people are seated in a circle. One person contributes five hundred rupees. Every person contributes the average of the money contributed by his two neighbors.
    1. What is the sum contributed by all the ten?
    A.5000
    C.=5000
    D. Cannot say.
    2. What is maximum contribution by an individual?
    A.500
    C.=500
    D.none

  7. A. >5000
    B.<5000
    C.=5000

  8. Anyone has solved question 5???…..part 1 is easy. I wanna know about part 2. Maximum value is ‘2’….is the minimum value ‘-2’???….actually, I have proved it, though I have a confusion!. Please reply!

  9. A11. There are 4 bins and 4 balls. Let P(Ei) be the probability of first n balls falling into distinct bins.
    Find a) P(E4) b)P(E4|E3) c)P(E4|E2) d)P(E3|E4)

  10. A9. Let f(x) = arcsin (sin (pi*x)).
    Find a) f(2.7). b) f'(2.7) c)integral from 0 to 2.5 of f(x)dx
    d)value of x for which f'(x) does not exist

  11. A8. In some country number plates are formed by 2 digits and 3 wovels. It is called confusing if it has both digit 0 and vowel o. a) How many such number plates exist? b) How many are not confusing

    • Answers – a)12500
      b) Not sure – 11000 something (Sorry!)

      • The qn was how many are confusing
        answer is 250

      • The question was how many are NOT confusing. WIth the NOT being in bold letters. And the answer is 125*81+64*19. As there can be 125*81 combinations with no 0. And there can be 64*19 combinations with no o. Both cannot be there together. Any one of them can exist

  12. A3. A number is called magical if a and b are not coprime to n, a+b is also not coprime to n. For example, 2 is magical as all even numbers are not coprime to 2. Find whether the following numbers are magical a)129 b)128 c)127 d)100

    • Answers – a)No
      b)Yes
      c)Yes
      d)No

      • why is 127 magical ? 127 = 1*127. 1 and 127 are both not coprime to 127, but 1+127=128 is coprime to 127. so 127 is not magical, right ?

      • why is 127 magical ?

      • Tiyacmi, by that logic neither is 2 a prime as neither 1 nor 2 are coprime to 2 but 3 is coprime to 2. But they give in the question itself that 2 is magical. I do not think 1 is counted as it is neither a prime nor a composite. Take all other numbers coprime to 127. You will find that it is magical. (In fact, all prime numbers are magical)

  13. Subjective 2)
    we know that there exist a number ‘a’ in that set, such that a^2=a(mod n^2). Now let a+b=n^2 [There must be an integer ‘b’ in the set]. then a^2=(n^2-b)^2=b^2(mod n^2) and a^2=a=n^2-b=-b(mod n^2). That means, b^2=-b(mod n^2), so b(b+1)=0(mod n^2) That means, our second integer is (b+1)= (n^2+1-a). Now, if ‘a’ and ‘b+1’ are distinct, then we can find two distinct integers. if not, then a=b+1 => a-b=1 and we know that a+b=n^2, Hence a=(n^2+1)/2 and b=(n^2-1)/2. Now, if n^2 is even, then ‘a’ and ‘b’ are not integers. So, we can find only one integer ‘a’ if n^2 is odd and two distinct integers ‘a’ and (n^2+1-a) when n^2 is even.
    [Is there any problem in this solution? I am not sure!]

  14. A2 for all finite word strings comprising A and B only, A string is arranged by dictionary order. eg. ABAA<ABB Also, A string with same components as a lesser string but with ehere xtra digits is greater than it eg. AB<ABAA. Write true or false
    A) For any arbitrary string w, with another string y<w, there cannot always exist a string x, w<x<y
    B) There is an infinite set of strings a1,a2… such that ai<a(i+1) for all i.
    C) There are fewer than 50 strings less than AABBABBA

  15. A7. a) In the expansion of (1+√2)^10 = sigma(0-10) Ci*(√2)^i, the term with maximum value is
    b)If (1+√2)^n = pn+qn√2, where pn and qn are integers, limit (n –> infinity) (pn/qn)^10 is

  16. Sir, what is the expected cutoff to be selected in CMI 2015?

  17. For A.8 part b) how many are not confusing ?
    first if it does not contain o : 100*64
    second if it does not contain 0 : 81*125
    now, from this we have to subtract the case where it contains neither o nor 0 since we have counted it twice … so the answer will be :
    100*64 + 81*125 – 81*64 = 11341

  18. is the answer of the 6th problem for the G.C.D 70? please confirm

  19. yes I mistook indeed…its 35

  20. I could not avoid a non calculus solution to 5:
    Part1:
    We have after simplifying and substituting p^2 by 1-q^2-r^2,
    f(q,r)=(q+r)(3-(q+r)^2)
    Let q+r=t
    f(t)=t(3-t^2)
    f'(t)=3-3t^2=0 implies t=+1 or t=-1
    It is easy to notice that the function attains maxima when t=+1
    Putting t=1 in the ineq. it is indeed true
    For 2nd part,
    Plug t=-1 and get -2 as minima

Leave a Reply

Your email address will not be published. Required fields are marked *

© Cheenta 2017

Login

Register

FACEBOOKGOOGLE Create an Account
Create an Account Back to login/register
X