INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

April 7, 2020

Circles and Triangles | AIME I, 2012 | Question 13

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on Circles and triangles.

Circles and triangles - AIME I, 2012

Three concentric circles have radii 3,4 and 5. An equilateral triangle with one vertex on each circle has side length s. The largest possible area of the triangle can be written as \(a+\frac{b}{c}d^\frac{1}{2}\) where a,b,c,d are positive integers b and c are relative prime and d is not divisible by the square of any prime, find a+b+c+d.

  • is 107
  • is 41
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

Answer: is 41.

AIME I, 2012, Question 13

Geometry Revisited by Coxeter

Try with Hints

First hint

In triangle ABC AO=3, BO=4, CO=5 let AB-BC=CA=s [ABC]=\(\frac{s^{2}3^\frac{1}{2}}{4}\)

Second Hint

\(s^{2}=3^{2}+4^{2}-2(3)(4)cosAOB\)=25-24cosAOB then [ABC]=\(\frac{25(3)^\frac{1}{2}}{4}-6(3)^\frac{1}{2}cosAOB\)

Final Step

of the required form for angle AOB=150 (in degrees) then [ABC]=\(\frac{25(3)^\frac{1}{2}}{4}+9\) then a+b+c+d=25+3+4+9=41.

Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.