Try this beautiful problem from Geometry based on Ratio of the area of circle and semi-circles.

Area of circles and semi-circles – AMC-8, 2010 – Problem 23


Semicircles POQ and ROS pass through the center O. What is the ratio of the combined areas of the two semicircles to the area of circle O?

circles and semi-circles
  • $\frac{1}{2}$
  • $\frac{2}{\pi}$
  • $ \frac{3}{2} $

Key Concepts


Geometry

Circle

co-ordinate geometry

Check the Answer


But try the problem first…

Answer:$\frac{1}{2}$

Source
Suggested Reading

AMC-8 (2010) Problem 23

Pre College Mathematics

Try with Hints


First hint

Find the radius of the circle

Can you now finish the problem ……….

Second Hint

ratio of the areas

Join O and Q

can you finish the problem……..

Final Step

ratio of the areas of circles and semi-circles

The co-ordinate of Q is (1,1), So OB=1 and BQ=1

By the Pythagorean Theorem, the radius of the larger circle i.e OQ=\(\sqrt{1^2+1^2}\)=\(\sqrt 2\).

Therefore the area of the larger circle be \(\pi (\sqrt 2)^2=2\pi\)

Now for the semicircles, radius OB=OC=1(as co-ordinate of P=(1,1) and S=(1,-1))

So, the area of the two semicircles is  \(2\times\frac{\pi(1)^2}{2}=\pi\)

 Finally, the ratio of the combined areas of the two semicircles to the area of circle O is

\(\frac{\pi}{2\pi}\)=\(\frac{1}{2}\)

Subscribe to Cheenta at Youtube