INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

May 3, 2019

Circle in Circle - PRMO 2017 | Problem 27

[et_pb_section fb_built="1" _builder_version="3.22.4"][et_pb_row _builder_version="3.22.4"][et_pb_column type="4_4" _builder_version="3.22.4"][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_padding="20px|20px|20px|20px"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.22.4" text_font="Raleway||||||||" background_color="#f4f4f4" box_shadow_style="preset2" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px"]

Let \( \Omega_1 \) be a circle with center O and let AB be a diameter of \( \Omega_1 \). Let P be a point on the segment OB different from O. Suppose another circle \( \Omega_2 \) with center P lies in the interior of \( \Omega_1 \). Tangents are drawn from A and B to the circle \( \Omega_2 \) intersecting \( \Omega_1 \) again at \(A_1\) and \(B_1\) respectively such that \(A_1 \) and \(B_1\) are on the opposite sides of AB. Given that \(A_1B = 5, AB_1 = 15 \) and \( OP = 10\), find the radius of \( \Omega_1 \).

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.22.4"][et_pb_column type="4_4" _builder_version="3.22.4"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.22.4" body_font="Raleway||||||||" toggle_font="||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="3.22.4" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" body_text_shadow_horizontal_length="0em" body_text_shadow_vertical_length="0em" body_text_shadow_blur_strength="0em"]

Pre Regional Math Olympiad India 2017, Problem 27

[/et_pb_accordion_item][et_pb_accordion_item title="Topic" open="off" _builder_version="3.22.4" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" body_text_shadow_horizontal_length="0em" body_text_shadow_vertical_length="0em" body_text_shadow_blur_strength="0em"]

Geometry

[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" open="off" _builder_version="3.22.4" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" body_text_shadow_horizontal_length="0em" body_text_shadow_vertical_length="0em" body_text_shadow_blur_strength="0em"]

Medium

[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" open="off" _builder_version="3.22.4" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" body_text_shadow_horizontal_length="0em" body_text_shadow_vertical_length="0em" body_text_shadow_blur_strength="0em"]

Challenges and Thrills of Pre- College Mathematics.

[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.22.4" tab_font="||||||||" tab_text_color="#ffffff" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]

Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.22.4"]

Draw a diagram carefully.

PRMO 2017 Problem 27

[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.22.4"]

Suppose the point of tangencies are at C and D. Join PC and PD.

Can you find two pairs of similar triangles?

PRMO 2017 Problem 27 Hint 2

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.22.4"]

\( \Delta APC \sim \Delta AA_1B \)

Why? 

Notice that AC is perpendicular to \( AA_1 \) as the radius is perpendicular to the tangent.

Also \( \angle A \) is common to both triangles. Hence the two triangles are similar (equiangular implies similar). 

Similarly \( \Delta BPD \sim \Delta BAB_1 \). 

Use the ratio of sides to find OA.

 

[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.22.4"]

Suppose OA = R (radius of the big circle).

OC  = r (radius of the small circle).

We already know OP = 10, \( A_1 B = 5, AB_1 = 15\)

PRMO 2017 Problem 27 Hint 2

Since \( \Delta AA_1B \) and \( ACP \) are similar we have \( \frac{AP}{AB} = \frac{PC}{A_1B}\). This implies  \( \frac{R+10}{2R} = \frac{r}{5}\) (1)

Similarlly since \( \Delta BPD \) and \( BAB_1 \) are similar we have \( \frac{BP}{BA} = \frac{PD}{AB_1}\). This implies  \( \frac{R-10}{2R} = \frac{r}{15}\) (2)

Multiply the reciprocal of (2) with (1) to get R = 20.

[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px"]

Watch the video

[/et_pb_text][et_pb_video src="https://youtu.be/Dg-5LHEXfjo" _builder_version="3.22.4" custom_margin="20px||20px"][/et_pb_video][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="Math Olympiad Program" url="https://www.cheenta.com/matholympiad/" image="https://www.cheenta.com/wp-content/uploads/2018/03/matholympiad.png" _builder_version="3.22.4" link_option_url="https://www.cheenta.com/matholympiad/" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px"]

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year.

Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/matholympiad/" button_text="Learn More" button_alignment="center" _builder_version="3.22.4" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3" background_layout="dark"][/et_pb_button][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px"]

Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

7 comments on “Circle in Circle - PRMO 2017 | Problem 27”

  1. radius of omega1 is 30 units. The problem is good but send me some elementary and difficult number theory, algebra,combinatorics problems and some good study material lecture vidoes or books for PRE- RMO, RMO, INMO and also for ISI and CMI PREPARATION. Send me as early as possible.

    1. Our computations show it is 20. We double checked with HBCSE. Can you check your calculations? If after reviewing if you think your calculations are correct, then do share it with us.

  2. Nicely Illustrated & Hinted in stages.I like it,It is valuable for all concerned with it.I wish a grand success for thiss endeavour.

  3. Triangle APC and Triangle ABA1 are similar. If r is the radius of smaller circle and R is the radius of bigger circle then,we obtain the equation:
    (r/5)=(R+10)/2R.
    Similarly, Triangle BPD and Triangle BAB1 are also similar. Hence we get another equation as:
    (r/15)=(R-10)/2R.
    Hence on solving for R we get 2R=10+30, or, R=20... That's the answer. It's easy but a good problem. THANKYOU. I would like to request you to provide few problems for CMI and IOMA preparation as ISI is knocking the door!

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter