How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Circle | Geometry Problem | PRMO-2017 | Question 27

Try this beautiful Problem from Geometry based on Circle from PRMO 2017.

Circle - PRMO 2017, Problem 27

Let $\Omega_{1}$ be a circle with centre 0 and let $A B$ be a diameter of $\Omega_{1} .$ Le $P$ be a point on the segment $O B$ different from 0. Suppose another circle $\Omega_{2}$ with centre P lies in the interior of $\Omega_{1}$. Tangents are drawn from A and B to the circle $\Omega_{2}$ intersecting $\Omega_{1}$ again at $A_{1}$ and $B_{1}$ respectively such that $A_{1}$, and $B_{1}$ are on the opposite sides of $A B$. Given that $A_{1} B=5, A B_{1}=15$ and $O P=10,$ find the radius of $\Omega_{1}$

  • $9$
  • $40$
  • $34$
  • $20$

Key Concepts



Check the Answer


PRMO-2017, Problem 27

Pre College Mathematics

Try with Hints

Circle Problem

Let radius of $\Omega_{1}$ be $R$ and that of $\Omega_{2}$ be $r$
From figure, $\Delta \mathrm{ADP} \sim \Delta \mathrm{AA}_{1} \mathrm{B}$
\Rightarrow \frac{D P}{A, B}=\frac{A P}{A B} \
\Rightarrow \frac{r}{5}=\frac{R+10}{2 R}

Can you now finish the problem ..........

Circle Problem figure

Again, $\Delta B P E \sim \Delta B A B_{1}$
Therefore $\frac{P E}{A B_{1}}=\frac{B P}{B A}$
$\Rightarrow \frac{r}{15}=\frac{R-10}{2 R}$

Can you finish the problem........

Dividing (1) by (2)

$3=\frac{R+10}{R-10} \Rightarrow R=20$

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.