How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Circle and Equilateral Triangle | AMC 10A, 2017| Problem No 22

Try this beautiful Problem on Geometry based on Circle and Equilateral Triangle from AMC 10 A, 2017. You may use sequential hints to solve the problem.

Circle and Equilateral Triangle  - AMC-10A, 2017- Problem 22

Sides $\overline{A B}$ and $\overline{A C}$ of equilateral triangle $A B C$ are tangent to a circle at points $B$ and $C$ respectively. What fraction of the area of $\triangle A B C$ lies outside the circle? $?$


  • $\frac{4 \sqrt{3} \pi}{27}-\frac{1}{3}$
  • $\frac{\sqrt{3}}{2}-\frac{\pi}{8}$
  • $12$
  • $\sqrt{3}-\frac{2 \sqrt{3} \pi}{9}$
  • $\frac{4}{3}-\frac{4 \sqrt{3} \pi}{27}$

Key Concepts




Suggested Book | Source | Answer

Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2017 Problem-22

Check the answer here, but try the problem first

$\frac{4}{3}-\frac{4 \sqrt{3} \pi}{27}$

Try with Hints

First Hint

Circle and equilateral triangle figure

Given that ABC is a equilateral triangle whose \(AB\) & \(AC\) are the tangents of the circle whose centre is \(O\). We have to find out the fraction of the area of $\triangle A B C$ lies outside the circle

shaded circle and equilateral triangle

we have to find out thr ratio of the areas of Blue colour : Red colour area. Therefore we have to findout the area of the circle and Triangle ABC.

Later we have to find out red area and subtract from the Triangle ABC.

Now can you finish the problem?

Second Hint

Let the radius of the circle be $r$, and let its center be $O$. since $\overline{A B}$ and $\overline{A C}$ are tangent to circle $O$, then $\angle O B A=\angle O C A=90^{\circ}$, so $\angle B O C=120^{\circ} .$ Therefore, since $\overline{O B}$ and $\overline{O C}$ are equal to $r$, then $\overline{B C}=r \sqrt{3}$. The area of the equilateral triangle is $\frac{(r \sqrt{3})^{2} \sqrt{3}}{4}=\frac{3 r^{2} \sqrt{3}}{4},$ and the area of the sector we are subtracting from it is $\frac{1}{3} \pi r^{2}-\frac{1}{2} r \cdot r \cdot \frac{\sqrt{3}}{2}=\frac{\pi r^{2}}{3}-\frac{r^{2} \sqrt{3}}{4} .$

Now Can you finish the Problem?

Third Hint

Therefore the area outside the circle is $\frac{3 r^{2} \sqrt{3}}{4}-\left(\frac{\pi r^{2}}{3}-\frac{r^{2} \sqrt{3}}{4}\right)=r^{2} \sqrt{3}-\frac{\pi r^{2}}{3}$

Therefore the Required fraction is $\frac{r^{2} \sqrt{3}-\frac{\pi r^{2}}{3}}{\frac{3 r^{2} \sqrt{3}}{4}}$

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.