Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Chords in a Circle | PRMO-2017 | Question 26

Try this beautiful Problem based on Chords in a Circle, Geometry, from PRMO 2017.

Chords in a Circle - PRMO 2017, Question 26


Let $A B$ and $C D$ be two parallel chords in a circle with radius 5 such that the centre $O$ lies between these chords. Suppose $A B=6, C D=8 .$ Suppose further that the area of the part of the circle lying between the chords $A B$ and $C D$ is $(m \pi+n) / k,$ where $m, n, k$ are positive integers with gcd$(m, n, k)=1$ . What is the value of $m+n+k ?$

  • $9$
  • $75$
  • $11$

Key Concepts


Geometry

Triangle

Circle

Check the Answer


Answer:$75$

PRMO-2017, Problem 26

Pre College Mathematics

Try with Hints


Chords in a Circle

Draw OE $\perp A B$ and $O F \perp C D$

Clearly $\mathrm{EB}=\frac{\mathrm{AB}}{2}=3, \mathrm{FD}=\frac{\mathrm{CU}}{2}=4$

$\mathrm{OE}=\sqrt{5^{2}-3^{2}}=4$ and $\mathrm{OF}=\sqrt{5^{2}-4^{2}}=3$

Therefore $\Delta O E B \sim \Delta D F O$

Can you now finish the problem ..........

Chords in a Circle

Let $\angle \mathrm{EOB}=\angle \mathrm{ODF}=\theta,$ then

$\angle B O D=\angle A O C=180^{\circ}-\left(\theta+90^{\circ}-\theta\right)=90^{\circ}$

Now area of portion between the chords

= \(2 \times\) (area of minor sector BOD)+2 \times ar\((\triangle AOB)\)
$=2 \times \frac{\pi \times 5^{2}}{4}+2 \times \frac{1}{2} \times 6 \times 4=\frac{25 \pi}{2}+24=\frac{25 \pi+48}{2}$

Therefore $m=25, n=48$ and $k=2$

Can you finish the problem........

Therefore $m+n+k=75$

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com