Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

CMI Entrance 2019 - Answer Key, Sequential Hints

[et_pb_section fb_built="1" _builder_version="3.22.4"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" header_font="Raleway||||||||" header_text_color="#0c71c3" background_color="#ffffff" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" border_width_all="2px" border_color_all="#0c71c3" inline_fonts="Abel"]

Please submit problems in the comment section. Try to make the statement as close to the actual statement as possible.

This post contains questions from Chennai Mathematical Institute, CMI Entrance 2019, Sequential hints, answer key, solutions. Our team will upload the solutions. Problems are contributed by students.

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25" min_height="1117px"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" header_font="Raleway||||||||" header_text_color="#ffffff" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset1" inline_fonts="Aclonica"]

Problems

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" text_orientation="center"]

1. Suppose \( \frac{8^x + 27^x}{12^x + 18 ^x} = 7/6 \). Find x.

2. There is a parallelogram ABCD. O is any point in the interior such that angle AOB + angle DOC = 180. Prove that angle ODC= angle OBC

3. Find the number of natural number n for which \(n^6+n^4+1 \) is a perfect square

4. \(\phi_k (m) = \phi_1 (\phi_{k-1} (m)) \)  and \(\phi_1 (m) \) is number of divisors of m . Find k for which \( \phi_k (2019^2019) =2 \)

5. If there exists a calculator with 12 buttons, 10 being the buttons for the digits and A and B being two buttons being processes where if n is displayed on the calculator if A is pressed it increases the displayed number by 1 and if B is pressed it multiplies n by 2 hence 2n. Hence find the minimum number of moves to get 260 from 1

6. Find the sum 1+111+11111+1111111+.....1....111(2k+1) ones 

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" text_orientation="center"][/et_pb_text][et_pb_text _builder_version="3.27.4" header_font="Raleway||||||||" header_text_color="#ffffff" background_color="#0c71c3" custom_margin="11px||48px|||" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset1" inline_fonts="Aclonica"]

Objective Section (Answer Key)

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="||||||||" text_font_size="12px"] 
1. 2. 3. 4. 5. 6. 
7. 8. 9. 10. 11. 12. 
13. 14. 15. 16. 17. 18. 
19. 20. 21. 22. 23. 24. 
25.26. 27.28. 29.30. 
 

[/et_pb_text][et_pb_text _builder_version="3.27.4" header_font="Raleway||||||||" header_text_color="#ffffff" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset1" inline_fonts="Aclonica"]

Subjective Section (Sequential Hints)

[/et_pb_text][et_pb_tabs _builder_version="3.22.4" body_font="||||||||"][et_pb_tab title="Problem 1 to 4" _builder_version="3.22.4" body_font="Raleway||||||||" tab_font="||||||||"][/et_pb_tab][et_pb_tab title="Problem 5 to 8" _builder_version="3.22.4"][/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" header_font="Raleway||||||||" header_text_color="#ffffff" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset1" inline_fonts="Aclonica"]

Faculty Team (for this section)

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row column_structure="1_4,1_4,1_4,1_4" _builder_version="3.25"][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Ashani Dasgupta" image="https://www.cheenta.com/wp-content/uploads/2016/11/Ashani-310x311.jpg" _builder_version="3.22.4" body_font="Raleway||||||||"]

Founder - Faculty at Cheenta. Pursuing Ph.D. at University of Wisconsin, Milwaukee. USA Research Interest: Geometric Group Theory

[/et_pb_blurb][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Srijit Mukherjee" image="https://www.cheenta.com/wp-content/uploads/2019/03/48081B40-8E1C-4330-8F97-51CA1690AC73.jpeg" _builder_version="3.22.4" body_font="Raleway||||||||"]

Faculty - Admin at Cheenta Pursuing B.Stat at Indian Statistical Institute, India

[/et_pb_blurb][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Writabrata Bhattacharya" image="https://www.cheenta.com/wp-content/uploads/2016/11/Writabrata.jpg" _builder_version="3.22.4" body_font="Raleway||||||||"]

Faculty at Cheenta Pursuing B.Sc. Math at Chennai Mathematical Institute, India Research Interest - Algebraic Geometry

[/et_pb_blurb][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Ishan Sengupta" image="" _builder_version="3.22.4" body_font="Raleway||||||||"]

Associate Faculty at Cheenta

Pursuing B.Stat from Indian Statistical Institute, India

[/et_pb_blurb][/et_pb_column][/et_pb_row][/et_pb_section]

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com