INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

May 15, 2019

CMI Entrance 2019 - Answer Key, Sequential Hints

[et_pb_section fb_built="1" _builder_version="3.22.4"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" header_font="Raleway||||||||" header_text_color="#0c71c3" background_color="#ffffff" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" border_width_all="2px" border_color_all="#0c71c3" inline_fonts="Abel"]

Please submit problems in the comment section. Try to make the statement as close to the actual statement as possible.

This post contains questions from Chennai Mathematical Institute, CMI Entrance 2019, Sequential hints, answer key, solutions. Our team will upload the solutions. Problems are contributed by students.

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25" min_height="1117px"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" header_font="Raleway||||||||" header_text_color="#ffffff" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset1" inline_fonts="Aclonica"]


[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" text_orientation="center"]

1. Suppose \( \frac{8^x + 27^x}{12^x + 18 ^x} = 7/6 \). Find x.

2. There is a parallelogram ABCD. O is any point in the interior such that angle AOB + angle DOC = 180. Prove that angle ODC= angle OBC

3. Find the number of natural number n for which \(n^6+n^4+1 \) is a perfect square

4. \(\phi_k (m) = \phi_1 (\phi_{k-1} (m)) \)  and \(\phi_1 (m) \) is number of divisors of m . Find k for which \( \phi_k (2019^2019) =2 \)

5. If there exists a calculator with 12 buttons, 10 being the buttons for the digits and A and B being two buttons being processes where if n is displayed on the calculator if A is pressed it increases the displayed number by 1 and if B is pressed it multiplies n by 2 hence 2n. Hence find the minimum number of moves to get 260 from 1

6. Find the sum 1+111+11111+1111111+.....1....111(2k+1) ones 

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" text_orientation="center"][/et_pb_text][et_pb_text _builder_version="3.27.4" header_font="Raleway||||||||" header_text_color="#ffffff" background_color="#0c71c3" custom_margin="11px||48px|||" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset1" inline_fonts="Aclonica"]

Objective Section (Answer Key)

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="||||||||" text_font_size="12px"] 
1. 2. 3. 4. 5. 6. 
7. 8. 9. 10. 11. 12. 
13. 14. 15. 16. 17. 18. 
19. 20. 21. 22. 23. 24. 
25.26. 27.28. 29.30. 

[/et_pb_text][et_pb_text _builder_version="3.27.4" header_font="Raleway||||||||" header_text_color="#ffffff" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset1" inline_fonts="Aclonica"]

Subjective Section (Sequential Hints)

[/et_pb_text][et_pb_tabs _builder_version="3.22.4" body_font="||||||||"][et_pb_tab title="Problem 1 to 4" _builder_version="3.22.4" body_font="Raleway||||||||" tab_font="||||||||"][/et_pb_tab][et_pb_tab title="Problem 5 to 8" _builder_version="3.22.4"][/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" header_font="Raleway||||||||" header_text_color="#ffffff" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset1" inline_fonts="Aclonica"]

Faculty Team (for this section)

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row column_structure="1_4,1_4,1_4,1_4" _builder_version="3.25"][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Ashani Dasgupta" image="" _builder_version="3.22.4" body_font="Raleway||||||||"]

Founder - Faculty at Cheenta. Pursuing Ph.D. at University of Wisconsin, Milwaukee. USA Research Interest: Geometric Group Theory

[/et_pb_blurb][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Srijit Mukherjee" image="" _builder_version="3.22.4" body_font="Raleway||||||||"]

Faculty - Admin at Cheenta Pursuing B.Stat at Indian Statistical Institute, India

[/et_pb_blurb][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Writabrata Bhattacharya" image="" _builder_version="3.22.4" body_font="Raleway||||||||"]

Faculty at Cheenta Pursuing B.Sc. Math at Chennai Mathematical Institute, India Research Interest - Algebraic Geometry

[/et_pb_blurb][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Ishan Sengupta" image="" _builder_version="3.22.4" body_font="Raleway||||||||"]

Associate Faculty at Cheenta

Pursuing B.Stat from Indian Statistical Institute, India


11 comments on “CMI Entrance 2019 - Answer Key, Sequential Hints”

  1. In a 8×8 chessboard two different squares are chosen at random.If two rooks are placed in these two squares , what is the probability that they will attack each other.(Remember that the rooks can move horizontally or vertically from their position)

    1. think that one rook is at corner . now it has actually 14 options where another rook can be placed
      if u take it forword one row it has actually 13 options . note that u can take it upto 4 row.

      here (14+13+12+11) case arose .

      now start it to move column wise u get same result

      now take it up (1,1) position it also has (14 ) option and then it redused to 13,12,11 respectively

      it can move in ( 4*4) squere

      n(a) = 16(50)

      n(s) = 64c2 = 63*32

      p(a) = 25/63

  2. You have a land in side of a river which is flowing straight.You want to take a rectangular shape of the land taking the bank of the river as one of its side.So, you can fence only three sides of the land.If you have only 60m of fence then what is the maximum area of your land?

  3. Consider the function f:R×R-->R defined by f((a,b))=lim_n-->inf (ln(e^(na)+e^(nb)))/n.For each of the following statements state sequentially whether they are true or false (write T for true and F for false,your answer should be in the form like TTF)
    1.f(0,x)=x for all x>=0
    2.f is not onto on R
    3.For every b the function f(x,b) is continuous on R
    4.For every a the function f(a,x) is differentiable on R

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.