 # Understand the problem

We have a rectangle whose sides are mirrors. A ray of light enters from one of vertices of the rectangle and after being reflected several times, exits via the vertex opposite to the initial one. Prove that at some point of time, the ray passed through the centre of rectangle (Intersection of the diagonals.)

##### Source of the problem
Iranian Mathematical Olympiad 2019 (second round)
##### Topic
Geometry/Combinatorics

##### Difficulty Level
Hard
It is interesting to note how Olympiads reflect the current state of mathematical research. This is not unexpected, because olympiad problems usually originate from elementary corollaries of advanced Mathematics. This particular problem has to do with the problem of billiards in the field of Dynamical Systems. The interested reader can learn more here.

Do you really need a hint? Try it first!

Instead of reflecting the ray and keeping the rectangle fixed, reflect the rectangle and keep the ray fixed.  Following hint 1, you will get a grid of rectangles and a straight line representing the path of light. If this straight line passes through one of the reflections of the opposite vertex, then in our original representation it has to pass through the opposite vertex. Similarly, if it passes through one of the reflections of the centre then in the original representation, it has to pass through the centre. Show that the reflections of $(a,b)$ are of the form $((2m-1)a,(2n-1)b)$. Also, the reflections of the centre $(a/2,b/2)$ are of the form $((p+1/2)a,(q+1/2)b$.
Suppose that the line indeed passes through a reflection of the opposite vertex. Then it is of the form $x(t)=(2m+1)at, y(t)=(2n+1)bt$. Taking $t=\frac{1}{2}$, we see that it passes through $((m+1/2)a,(n+1/2)b)$, which is a reflection of the centre.

# Connected Program at Cheenta

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

# Similar Problems

## Sum of Sides of Triangle | PRMO-2018 | Problem No-17

Try this beautiful Problem on Geometry from PRMO -2018.You may use sequential hints to solve the problem.

## Recursion Problem | AMC 10A, 2019| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-15, You may use sequential hints to solve the problem.

## Roots of Polynomial | AMC 10A, 2019| Problem No 24

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-24, You may use sequential hints to solve the problem.

## Set of Fractions | AMC 10A, 2015| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2015. Problem-15. You may use sequential hints to solve the problem.

## Indian Olympiad Qualifier in Mathematics – IOQM

Due to COVID 19 Pandemic, the Maths Olympiad stages in India has changed. Here is the announcement published by HBCSE: Important Announcement [Updated:14-Sept-2020]The national Olympiad programme in mathematics culminating in the International Mathematical Olympiad...

## Positive Integers and Quadrilateral | AMC 10A 2015 | Sum 24

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2015. Problem-24. You may use sequential hints to solve the problem.

## Rectangular Piece of Paper | AMC 10A, 2014| Problem No 22

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2014. Problem-23. You may use sequential hints to solve the problem.

## Probability in Marbles | AMC 10A, 2010| Problem No 23

Try this beautiful Problem on Probability from AMC 10A, 2010. Problem-23. You may use sequential hints to solve the problem.

## Points on a circle | AMC 10A, 2010| Problem No 22

Try this beautiful Problem on Number theory based on Triangle and Circle from AMC 10A, 2010. Problem-22. You may use sequential hints to solve the problem.

## Circle and Equilateral Triangle | AMC 10A, 2017| Problem No 22

Try this beautiful Problem on Triangle and Circle from AMC 10A, 2017. Problem-22. You may use sequential hints to solve the problem.