Understand the problem

We have a rectangle whose sides are mirrors. A ray of light enters from one of vertices of the rectangle and after being reflected several times, exits via the vertex opposite to the initial one. Prove that at some point of time, the ray passed through the centre of rectangle (Intersection of the diagonals.)

Source of the problem
Iranian Mathematical Olympiad 2019 (second round)
Topic
Geometry/Combinatorics

Difficulty Level
Hard
Comments
It is interesting to note how Olympiads reflect the current state of mathematical research. This is not unexpected, because olympiad problems usually originate from elementary corollaries of advanced Mathematics. This particular problem has to do with the problem of billiards in the field of Dynamical Systems. The interested reader can learn more here.

Start with hints

Do you really need a hint? Try it first!

Instead of reflecting the ray and keeping the rectangle fixed, reflect the rectangle and keep the ray fixed.  

Following hint 1, you will get a grid of rectangles and a straight line representing the path of light. If this straight line passes through one of the reflections of the opposite vertex, then in our original representation it has to pass through the opposite vertex. Similarly, if it passes through one of the reflections of the centre then in the original representation, it has to pass through the centre.

Show that the reflections of (a,b) are of the form ((2m-1)a,(2n-1)b). Also, the reflections of the centre (a/2,b/2) are of the form ((p+1/2)a,(q+1/2)b.
Suppose that the line indeed passes through a reflection of the opposite vertex. Then it is of the form x(t)=(2m+1)at, y(t)=(2n+1)bt. Taking t=\frac{1}{2}, we see that it passes through ((m+1/2)a,(n+1/2)b), which is a reflection of the centre.

Watch the video (Coming Soon)

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.

Median of numbers | AMC-10A, 2020 | Problem 11

Try this beautiful problem from Geometry based on Median of numbers from AMC 10A, 2020. You may use sequential hints to solve the problem.

LCM and Integers | AIME I, 1998 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1998, Problem 1, based on LCM and Integers.

Cubic Equation | AMC-10A, 2010 | Problem 21

Try this beautiful problem from Algebra, based on the Cubic Equation problem from AMC-10A, 2010. You may use sequential hints to solve the problem.

Problem on Fraction | AMC 10A, 2015 | Question 15

Try this beautiful Problem on Fraction from Algebra from AMC 10A, 2015. You may use sequential hints to solve the problem.

Pen & Note Books Problem| PRMO-2017 | Question 8

Try this beautiful Pen & Note Books Problem from Algebra from PRMO 2017, Question 8. You may use sequential hints to solve the problem.