INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 
Bose Olympiad Project Round is Live now. Learn More 

April 25, 2017

B.Math 2011 Objective Paper| Problems & Solutions

Here are the problems and their corresponding solutions from B.Math Hons Objective Admission Test 2011.

Problem 1: 

The equation of the circle of smallest radius which passes through the points $(-1,0)$ and $(0,-1)$ is:
(A) $x^{2}+y^{2}+2 x y=0 ;$
(B) $x^{2}+y^{2}+x+y=0$;
(C) $x^{2}+y^{2}-x-y=0$;
(D) $x^{2}+y^{2}+x+y+1 / 4=0$.


Problem 2: 

The function $f(x)=x^{2} e^{-|x|}$ defined on the entire real line is
(A) not continuous at exactly one point;
(B) continuous everywhere but not differentiable at exactly one point;
(C) differentiable everywhere;
(D) differentiable everywhere.


Problem 3:

Let $c_{1}$ and $c_{2}$ be positive real numbers. Consider the function
$$
f(x)=\left{\begin{array}{cc}
c_{1} x, & 0 \leq x<\frac{1}{3} \
c_{2}(1-x), & \frac{1}{3} \leq x \leq 1
\end{array}\right.
$$
If $f$ is continuous and $\int_{0}^{1} f(x) d x=1,$ the value of $c_{2}$ is
(A) $2 ;$
(B) 1 ;
(C) 3;
(D) $\frac{1}{2}$


Problem 4: 

Mr. Gala purchased $10$ plots of land in the year $2007,$ all plots costing the same amount. He made a profit of $25$ percent on each of the $6$ plots which he sold in $2008$. He had a loss of $25$ percent on each of the remaining plots when he sold them in $2009$. If he ended with a total profit of Rs. $2$ crores in this project, his total purchase price was
(A) $8$ crores;
(B) $40$ crores;
(C) $10$ crores;
(D) $20$ crores.


Problem 5: 

Let $f(x)=x \sin (1 / x)$ for $x>0 .$ Then
(A) $f$ is unbounded;
(B) $f$ is bounded, but $\lim _{x \rightarrow \infty} f(x)$ does not exist;

(C) $\lim _{x \rightarrow \infty} f(x)=1 ;$
(D) $\lim _{x \rightarrow \infty} f(x)=0$.


Problem 6: 

Let $a$ be the $81$- digit number all digits of which are equal to $1$. Then the number $a$ is

(A) divisible by $9$ but not divisible by $27$;

(B) divisible by $27$ but not divisible by $81$;

(C) divisible by $81$ but not divisible by $243$;

(D) divisible by $243$.

Problem 7: 

Let $P(x)$ be a polynomial of degree $11$ such that $P(x) = \frac{1}{x+1}$, for $x = 0,1,2, \cdots11$.

Then the value of $P(12)$

(A) equals 0;

(B) equals 1;

(C) equals $\frac{1}{13}$;

(D) cannot be determined from the given information.

Problem 8: 

If $x=\log _{e}(\frac{1}{\sqrt{\tan 15^{\circ}}})$, then the value of $\frac{\sum_{n=0}^{\infty} e^{-2 n x}}{\sum_{n=0}^{\infty}(-1)^{n} e^{-2 n x}}$

equals

(A) $\sqrt{3}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$;
(D) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$.

Problem 9:

Define $f(x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) !}$ and $g(x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n) !}$, where $x$ is a real number.
Then

(A) $f(x)>g(x)$ for all $x$;
(B) $f(x)<g(x)$ for all $x$;
(C) $f(x)=g(x)$ for alt $x$;
(D) none of the above statements need necessarily hold for all $x$.

Problem 10:

The number of roots of the equation $ \sin \pi x=x^{2}-x+\frac{5}{4}$ is

(A) $0$;

(B) $1$;

(c) $2$;

(D) $4$.

Problem 11:

Let $P=(0, a), Q=(b, 0), R=(c, d),$ be three points such that $a, b, c$ and $d$ are all positive and the origin and the point $R$ are on the opposite sides of $P Q$. Then the area of the triangle $P Q R$ is equal to

(A) $\frac{a d+b c-a b}{2} ;$
(B) $\frac{a b+a c-b d}{2} ;$
(C) $\frac{a b+b d-a c}{2} ;$
(D) $\frac{a c+b d-a b}{2}$.

Problem 12:

Let $A_{1}, A_{2}, \cdots, A_{n}$ be the interior angles of an $n$ -sided convex polygon. Then the value of $\frac{\cos \left(A_{1}+A_{2}+\cdots+A_{k}\right)}{\cos \left(A_{k+1}+A_{k+2}+\cdots+A_{n}\right)}$ , where $\cos \left(\sum_{i=1}^{k} A_{i}\right) \neq 0$ for any $k=1,2, \ldots, n-1$


(A) is independent of both $k$ and $n$;
(B) is independent of $k$ but depends on $n$ :
(C) is independent of $n$ but depends on $k$ :
(D) depends on both $k$ and $n$.

Problem 13:

Let $S$ denote the set of all complex numbers of the form $\frac{z +1}{z-3}$ where $z$ varies over the set of all complex numbers with $|z| = 1$. Then

(A) the set $S$ is a straight line in the complex plane;
(B) the set $S$ is a circle of radius $\frac{1}{2}$ in the complex plane;
(C) the set $S$ is a circle of radius $\frac{1}{4}$ in the complex plane:
(D) the set $S$ is an ellipse with axes $\frac{1}{2}$ and $\frac{1}{4}$ in the complex plane.

Problem 14:

The value of $\int_{0}^{2 \pi}|1+2 \sin x| d x$ is

(A) $2 \pi ;$
(B) $\frac{2 \pi}{3}$;
(C) $4+\frac{\pi}{3}$ :
(D) $4 \sqrt{3}+\frac{2 \pi}{3}$.

Problem 15:

Let $f(x) =\begin{cases} 0 & \quad \text { if } x \leq 1 \\ \log_{2}x & \quad \text { if } x >1 \end
{cases}$

and let $f^{(2)}(x)=f(f(x)), f^{(3)}(x)=f\left(f^{(2)}(x)\right), \ldots,$ and generally, $f^{(n+1)}(x)= f\left(f^{(n)}(x)\right) . $Let $N(x)=\min \{n \geq 1: f^{(n)}(x)=0\}$.Then the value of $N(425268)$ is


(A) $4$;
(B) $5$;
(C)$6$;

(D) $7$

Problem 16:

Let $f$ be a positive differentiable function defined on $(0,\infty)$. Then

$\lim _{n \rightarrow \infty}\left(\frac{f\left(x+\frac{1}{n}\right)}{f(x)}\right)^{n}$

(A) equals $1$ ;
(B) equals $\frac{f^{\prime}(x)}{f(x)}$;
(C) equals $e^{\left(\frac{f^{\prime}(x)}{f(x)}\right)}$;
(D) may not exist for some $f$.

Problem 17:

Let $ABC$ be a right angled triangle with $BC =3$ and $AC = 4$. Let $D$ be a point on the hypotenuse $AB$ such that $\angle BCD = 30^{\circ}$. The length of $CD$ is

(A) $\frac{24}{3+4 \sqrt{3}}$;
(B) $\frac{3 \sqrt{3}}{2}$
(C) $6 \sqrt{3}-8$
(D) $\frac{25}{12}$.

Problem 18:

Let $a$ be a positive number. Then

$\lim _{n \rightarrow \infty}\left[\frac{1}{a+n}+\frac{1}{2 a+n}+\ldots+\frac{1}{a n+n}\right]$ equals

(A) 0
(B) $\log _{e}(1+a)$

(C) $\frac{1}{a} \log _{e}(1+a)$
(D) none of these expressions.

Problem 19:

The area of the region in the first quadrant bounded by the $x$-axis and the curves $y = 2-x^2$ and $x=y^{2}$ is

(A) $\frac{4 \sqrt{2}}{3}$;
(B) $\frac{4 \sqrt{2}}{3}-1$;
(C) $\frac{2}{3} \sqrt[4]{8}$;
(D) $1+\frac{2}{3} \sqrt[4]{8}$

Problem 20:

Let $f(x)$ be the function defined on the interval $(0,1)$ by

$f(x)=\begin{cases}x(1-x) & \text { if } x \text { is rational, } \\ \frac{1}{4}-x(1-x) & \text { if } x \text { is not rational }\end{cases}$.

Then $f$ is continuous

(A) at no point in $(0,1)$;
(B) at exactly one point in $(0,1)$;
(C) at exactly two points in (0,1);

(D) at more than two points in $(0,1)$.

Problem 21:

Consider a circle of radius $a$. Let $P$ be a point at a distance $b(>a)$ from the center of the circle. The tangents from the point $P$ to the circle meet the circle at $Q$ and $R$. Then the area of the triangle $PQR$ is

(A) $\frac{a\left(b^{2}-a^{2}\right)^{3 / 2}}{b^{2}}$;
(B)$\frac{a^{2} \sqrt{b^{2}-a^{2}}}{b}$;
(C) $\frac{b^{2} \sqrt{b^{2}-a^{2}}}{a}$;
(D) $\frac{b\left(b^{2}-a^{2}\right)^{3 / 2}}{a^{2}}$

Problem 22:

Suppose two complex numbers $z=a+i b$ and $w=c+i d$ satisfy the equation
$\frac{z+w}{z}=\frac{w}{z+w}$. Then
(A) both $a$ and $c$ are zero;
(B) both $b$ and $d$ are zero;
(C) both $b$ and $d$ must be non-zero;
(D) at least one of $b$ and $d$ is non-zero.

Problem 23:

$\lim _{n \rightarrow \infty}\{(1+\frac{1}{n})^{n}-(1+\frac{1}{n})\}^{-n}$ is

(A) $1$;
(B) $\frac{1}{e-1} ;$
(C) $1-e^{-1}$;
(D) $0$ .

Problem 24:

Let $f(x)=e^{x}$
$g(x)=\begin{cases} x^{2} & \text { if } x<1 / 2 \\ x-\frac{1}{4} & \text { if } x \geq 1 / 2
\end{cases}$

and $h(x)=f(g(x))$. The derivative of $h$ at $x=1 / 2$

(A) is $e$;
(B) is $e^{1 / 2}$;
(C) is $e^{1 / 4}$;
(D) does not exist.

Problem 25:

The value of

$\frac{2+6}{4^{100}}+\frac{2+2 \times 6}{4^{99}}+\frac{2+3 \times 6}{4^{94}}+\cdots+\frac{2+99 \times 6}{4^{2}}+\frac{2+100 \times 6}{4}$

is equals to

(A) $\frac{1}{3}(604-\frac{1}{4^{98}})$;
(B) $\frac{1}{3}(600-\frac{1}{4^{98}})$;
(C) $\frac{604}{3}$;
(D) $200$.

Problem 26:

Let $a, b$ and $c$ be the sides of a right-angled triangle, where $a$ is the hypotenuse.

Let $d$ be the diameter of the inscribed circle. Then
(A) $d+a = b+c$;
(B) $d+a < b+c$;

(C) $d+a > b+c$;

(D) none of the above relations need always be true.

Problem 27:

Let $P$ be a point in the first quadrant lying on the parabola $y=4-x^{2}$. Let $A B$ be the tangent to the parabola at $P$ menting the at $B$. If $O$ is the origin, then the minimeeting the $x$ -axis at $A$ and the $y$ -axis is
(A) $\frac{64}{3 \sqrt{3}}$;
(B) $\frac{32}{3 \sqrt{3}}$
(C) $64(3 \sqrt{3})$
(D) $32(3 \sqrt{3})$

Problem 28: The value of the expression

$$
\sum_{0 \leq i<j \leq n} \sum (-1)^{i-j+1}\left(\begin{array}{c}
n \\
i
\end{array}\right)\left(\begin{array}{c}
n \\
j
\end{array}\right)
$$ is

(A) $\left(\begin{array}{c}2 n-1 \\ n\end{array}\right)$;
(B) $\left(\begin{array}{l}2 n \\ n\end{array}\right)$;
(C) $\left(\begin{array}{c}2 n+1 \\ n\end{array}\right)$;
(D) none of these expressions

Problem 29:

A man standing at a point $O$ finds that a balloon at a height $h$ metres due east of him has an angle of elevation $60^{\circ}$. He walks due north while the balloon moves north-west $\left(45^{\circ}\right.$ west of north) remaining at the same height. After he has walked $100$ metres the balloon is vertically above him. Then the value of $h$ in metres is
(A) $50$ ;
(B) $50 \sqrt{3}$
(C) $100 \sqrt{3}$;
(D) $\frac{100}{\sqrt{3}}$

Problem 30:

About the dolls in a shop a customer said "It is not true that some dolls have neither black hair nor blue eyes". The customer means that
(A) some dolls have both black hair and blue eyes;
(R) all dolls have both black hair and blue eyes;
(c) some dolls have either black hair or blue eyes;
(n) all dolls have either black hair or blue eyes.


Some Useful Links:

One comment on “B.Math 2011 Objective Paper| Problems & Solutions”

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter