Here are the problems and their corresponding solutions from B.Math Hons Objective Admission Test 2011.
Problem 1:
The domain of definition of $f(x)=-\log \left(x^{2}-2 x-3\right)$ is
(a) $(0, \infty)$
(b) $(-\infty,-1)$
(c) $(-\infty,-1) \cup(3, \infty)$
(d) $(-\infty,-3) \cup(1, \infty)$
Problem 2:
$A B C$ is a right-angled triangle with the right angle at B. If $A B=7$ and $B C=24$, then the length of the perpendicular from $B$ to $A C$ is
(a) $12.2$
(b) $6.72$
(c) $7.2$
(d) $3.36$
Problem 3:
If the points $\mathbf{z}{1}$ and $\mathbf{z}{2}$ are on the circles $|\mathbf{z}|=2$ and $|\mathbf{z}|=3$ respectively and the angle included between these vectors is $60^{\circ}$, then $\left|\left(\mathbf{z}{1}+\mathbf{z}{2}\right) /\left(\mathbf{z}{1}-\mathbf{z}{2}\right)\right|$ equals
(a) $\sqrt{(19 / 7)}$
(b) $\sqrt{19}$
(c) $\sqrt{7}$
(d) $\sqrt{133}$
Problem 4:
Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{d}$ be positive integers such that $\log \mathrm{a}(\mathbf{b})=\mathbf{3 / 2}$ and
$\log (\mathrm{d})=5 / 4 .$ If $\mathrm{a}-\mathrm{c}=9$, then $b-d$ equals
(a) 55
(b) 23
(c) 89
(d) 93
Problem 5:
Let $f(x)=x \sin (1 / x)$ for $x>0 .$ Then
(A) $f$ is unbounded;
(B) $f$ is bounded, but $\lim _{x \rightarrow \infty} f(x)$ does not exist;
(C) $\lim _{x \rightarrow \infty} f(x)=1 ;$
(D) $\lim _{x \rightarrow \infty} f(x)=0$.
Problem 6:
Let $a$ be the $81$- digit number all digits of which are equal to $1$. Then the number $a$ is
(A) divisible by $9$ but not divisible by $27$;
(B) divisible by $27$ but not divisible by $81$;
(C) divisible by $81$ but not divisible by $243$;
(D) divisible by $243$.
Problem 7:
Let $P(x)$ be a polynomial of degree $11$ such that $P(x) = \frac{1}{x+1}$, for $x = 0,1,2, \cdots11$.
Then the value of $P(12)$
(A) equals 0;
(B) equals 1;
(C) equals $\frac{1}{13}$;
(D) cannot be determined from the given information.
Problem 8:
If $x=\log _{e}(\frac{1}{\sqrt{\tan 15^{\circ}}})$, then the value of $\frac{\sum_{n=0}^{\infty} e^{-2 n x}}{\sum_{n=0}^{\infty}(-1)^{n} e^{-2 n x}}$
equals
(A) $\sqrt{3}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$;
(D) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$.
Problem 9:
Define $f(x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) !}$ and $g(x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n) !}$, where $x$ is a real number.
Then
(A) $f(x)>g(x)$ for all $x$;
(B) $f(x)<g(x)$ for all $x$;
(C) $f(x)=g(x)$ for alt $x$;
(D) none of the above statements need necessarily hold for all $x$.
Problem 10:
The number of roots of the equation $ \sin \pi x=x^{2}-x+\frac{5}{4}$ is
(A) $0$;
(B) $1$;
(c) $2$;
(D) $4$.
Problem 11:
Let $P=(0, a), Q=(b, 0), R=(c, d),$ be three points such that $a, b, c$ and $d$ are all positive and the origin and the point $R$ are on the opposite sides of $P Q$. Then the area of the triangle $P Q R$ is equal to
(A) $\frac{a d+b c-a b}{2} ;$
(B) $\frac{a b+a c-b d}{2} ;$
(C) $\frac{a b+b d-a c}{2} ;$
(D) $\frac{a c+b d-a b}{2}$.
Problem 12:
Let $A_{1}, A_{2}, \cdots, A_{n}$ be the interior angles of an $n$ -sided convex polygon. Then the value of $\frac{\cos \left(A_{1}+A_{2}+\cdots+A_{k}\right)}{\cos \left(A_{k+1}+A_{k+2}+\cdots+A_{n}\right)}$ , where $\cos \left(\sum_{i=1}^{k} A_{i}\right) \neq 0$ for any $k=1,2, \ldots, n-1$
(A) is independent of both $k$ and $n$;
(B) is independent of $k$ but depends on $n$ :
(C) is independent of $n$ but depends on $k$ :
(D) depends on both $k$ and $n$.
Problem 13:
Let $S$ denote the set of all complex numbers of the form $\frac{z +1}{z-3}$ where $z$ varies over the set of all complex numbers with $|z| = 1$. Then
(A) the set $S$ is a straight line in the complex plane;
(B) the set $S$ is a circle of radius $\frac{1}{2}$ in the complex plane;
(C) the set $S$ is a circle of radius $\frac{1}{4}$ in the complex plane:
(D) the set $S$ is an ellipse with axes $\frac{1}{2}$ and $\frac{1}{4}$ in the complex plane.
Problem 14:
The value of $\int_{0}^{2 \pi}|1+2 \sin x| d x$ is
(A) $2 \pi ;$
(B) $\frac{2 \pi}{3}$;
(C) $4+\frac{\pi}{3}$ :
(D) $4 \sqrt{3}+\frac{2 \pi}{3}$.
Problem 15:
Let $f(x) =\begin{cases} 0 & \quad \text { if } x \leq 1 \\ \log_{2}x & \quad \text { if } x >1 \end
{cases}$
and let $f^{(2)}(x)=f(f(x)), f^{(3)}(x)=f\left(f^{(2)}(x)\right), \ldots,$ and generally, $f^{(n+1)}(x)= f\left(f^{(n)}(x)\right) . $Let $N(x)=\min \{n \geq 1: f^{(n)}(x)=0\}$.Then the value of $N(425268)$ is
(A) $4$;
(B) $5$;
(C)$6$;
(D) $7$
Problem 16:
Let $f$ be a positive differentiable function defined on $(0,\infty)$. Then
$\lim _{n \rightarrow \infty}\left(\frac{f\left(x+\frac{1}{n}\right)}{f(x)}\right)^{n}$
(A) equals $1$ ;
(B) equals $\frac{f^{\prime}(x)}{f(x)}$;
(C) equals $e^{\left(\frac{f^{\prime}(x)}{f(x)}\right)}$;
(D) may not exist for some $f$.
Problem 17:
Let $ABC$ be a right angled triangle with $BC =3$ and $AC = 4$. Let $D$ be a point on the hypotenuse $AB$ such that $\angle BCD = 30^{\circ}$. The length of $CD$ is
(A) $\frac{24}{3+4 \sqrt{3}}$;
(B) $\frac{3 \sqrt{3}}{2}$
(C) $6 \sqrt{3}-8$
(D) $\frac{25}{12}$.
Problem 18:
Let $a$ be a positive number. Then
$\lim _{n \rightarrow \infty}\left[\frac{1}{a+n}+\frac{1}{2 a+n}+\ldots+\frac{1}{a n+n}\right]$ equals
(A) 0
(B) $\log _{e}(1+a)$
(C) $\frac{1}{a} \log _{e}(1+a)$
(D) none of these expressions.
Problem 19:
The area of the region in the first quadrant bounded by the $x$-axis and the curves $y = 2-x^2$ and $x=y^{2}$ is
(A) $\frac{4 \sqrt{2}}{3}$;
(B) $\frac{4 \sqrt{2}}{3}-1$;
(C) $\frac{2}{3} \sqrt[4]{8}$;
(D) $1+\frac{2}{3} \sqrt[4]{8}$
Problem 20:
Let $f(x)$ be the function defined on the interval $(0,1)$ by
$f(x)=\begin{cases}x(1-x) & \text { if } x \text { is rational, } \\ \frac{1}{4}-x(1-x) & \text { if } x \text { is not rational }\end{cases}$.
Then $f$ is continuous
(A) at no point in $(0,1)$;
(B) at exactly one point in $(0,1)$;
(C) at exactly two points in (0,1);
(D) at more than two points in $(0,1)$.
Problem 21:
Consider a circle of radius $a$. Let $P$ be a point at a distance $b(>a)$ from the center of the circle. The tangents from the point $P$ to the circle meet the circle at $Q$ and $R$. Then the area of the triangle $PQR$ is
(A) $\frac{a\left(b^{2}-a^{2}\right)^{3 / 2}}{b^{2}}$;
(B)$\frac{a^{2} \sqrt{b^{2}-a^{2}}}{b}$;
(C) $\frac{b^{2} \sqrt{b^{2}-a^{2}}}{a}$;
(D) $\frac{b\left(b^{2}-a^{2}\right)^{3 / 2}}{a^{2}}$
Problem 22:
Suppose two complex numbers $z=a+i b$ and $w=c+i d$ satisfy the equation
$\frac{z+w}{z}=\frac{w}{z+w}$. Then
(A) both $a$ and $c$ are zero;
(B) both $b$ and $d$ are zero;
(C) both $b$ and $d$ must be non-zero;
(D) at least one of $b$ and $d$ is non-zero.
Problem 23:
$\lim _{n \rightarrow \infty}\{(1+\frac{1}{n})^{n}-(1+\frac{1}{n})\}^{-n}$ is
(A) $1$;
(B) $\frac{1}{e-1} ;$
(C) $1-e^{-1}$;
(D) $0$ .
Problem 24:
Let $f(x)=e^{x}$
$g(x)=\begin{cases} x^{2} & \text { if } x<1 / 2 \\ x-\frac{1}{4} & \text { if } x \geq 1 / 2
\end{cases}$
and $h(x)=f(g(x))$. The derivative of $h$ at $x=1 / 2$
(A) is $e$;
(B) is $e^{1 / 2}$;
(C) is $e^{1 / 4}$;
(D) does not exist.
Problem 25:
The value of
$\frac{2+6}{4^{100}}+\frac{2+2 \times 6}{4^{99}}+\frac{2+3 \times 6}{4^{94}}+\cdots+\frac{2+99 \times 6}{4^{2}}+\frac{2+100 \times 6}{4}$
is equals to
(A) $\frac{1}{3}(604-\frac{1}{4^{98}})$;
(B) $\frac{1}{3}(600-\frac{1}{4^{98}})$;
(C) $\frac{604}{3}$;
(D) $200$.
Problem 26:
Let $a, b$ and $c$ be the sides of a right-angled triangle, where $a$ is the hypotenuse.
Let $d$ be the diameter of the inscribed circle. Then
(A) $d+a = b+c$;
(B) $d+a < b+c$;
(C) $d+a > b+c$;
(D) none of the above relations need always be true.
Problem 27:
Let $P$ be a point in the first quadrant lying on the parabola $y=4-x^{2}$. Let $A B$ be the tangent to the parabola at $P$ menting the at $B$. If $O$ is the origin, then the minimeeting the $x$ -axis at $A$ and the $y$ -axis is
(A) $\frac{64}{3 \sqrt{3}}$;
(B) $\frac{32}{3 \sqrt{3}}$
(C) $64(3 \sqrt{3})$
(D) $32(3 \sqrt{3})$
Problem 28: The value of the expression
$$
\sum_{0 \leq i<j \leq n} \sum (-1)^{i-j+1}\left(\begin{array}{c}
n \\
i
\end{array}\right)\left(\begin{array}{c}
n \\
j
\end{array}\right)
$$ is
(A) $\left(\begin{array}{c}2 n-1 \\ n\end{array}\right)$;
(B) $\left(\begin{array}{l}2 n \\ n\end{array}\right)$;
(C) $\left(\begin{array}{c}2 n+1 \\ n\end{array}\right)$;
(D) none of these expressions
Problem 29:
A man standing at a point $O$ finds that a balloon at a height $h$ metres due east of him has an angle of elevation $60^{\circ}$. He walks due north while the balloon moves north-west $\left(45^{\circ}\right.$ west of north) remaining at the same height. After he has walked $100$ metres the balloon is vertically above him. Then the value of $h$ in metres is
(A) $50$ ;
(B) $50 \sqrt{3}$
(C) $100 \sqrt{3}$;
(D) $\frac{100}{\sqrt{3}}$
Problem 30:
About the dolls in a shop a customer said "It is not true that some dolls have neither black hair nor blue eyes". The customer means that
(A) some dolls have both black hair and blue eyes;
(R) all dolls have both black hair and blue eyes;
(c) some dolls have either black hair or blue eyes;
(n) all dolls have either black hair or blue eyes.
Here are the problems and their corresponding solutions from B.Math Hons Objective Admission Test 2011.
Problem 1:
The domain of definition of $f(x)=-\log \left(x^{2}-2 x-3\right)$ is
(a) $(0, \infty)$
(b) $(-\infty,-1)$
(c) $(-\infty,-1) \cup(3, \infty)$
(d) $(-\infty,-3) \cup(1, \infty)$
Problem 2:
$A B C$ is a right-angled triangle with the right angle at B. If $A B=7$ and $B C=24$, then the length of the perpendicular from $B$ to $A C$ is
(a) $12.2$
(b) $6.72$
(c) $7.2$
(d) $3.36$
Problem 3:
If the points $\mathbf{z}{1}$ and $\mathbf{z}{2}$ are on the circles $|\mathbf{z}|=2$ and $|\mathbf{z}|=3$ respectively and the angle included between these vectors is $60^{\circ}$, then $\left|\left(\mathbf{z}{1}+\mathbf{z}{2}\right) /\left(\mathbf{z}{1}-\mathbf{z}{2}\right)\right|$ equals
(a) $\sqrt{(19 / 7)}$
(b) $\sqrt{19}$
(c) $\sqrt{7}$
(d) $\sqrt{133}$
Problem 4:
Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{d}$ be positive integers such that $\log \mathrm{a}(\mathbf{b})=\mathbf{3 / 2}$ and
$\log (\mathrm{d})=5 / 4 .$ If $\mathrm{a}-\mathrm{c}=9$, then $b-d$ equals
(a) 55
(b) 23
(c) 89
(d) 93
Problem 5:
Let $f(x)=x \sin (1 / x)$ for $x>0 .$ Then
(A) $f$ is unbounded;
(B) $f$ is bounded, but $\lim _{x \rightarrow \infty} f(x)$ does not exist;
(C) $\lim _{x \rightarrow \infty} f(x)=1 ;$
(D) $\lim _{x \rightarrow \infty} f(x)=0$.
Problem 6:
Let $a$ be the $81$- digit number all digits of which are equal to $1$. Then the number $a$ is
(A) divisible by $9$ but not divisible by $27$;
(B) divisible by $27$ but not divisible by $81$;
(C) divisible by $81$ but not divisible by $243$;
(D) divisible by $243$.
Problem 7:
Let $P(x)$ be a polynomial of degree $11$ such that $P(x) = \frac{1}{x+1}$, for $x = 0,1,2, \cdots11$.
Then the value of $P(12)$
(A) equals 0;
(B) equals 1;
(C) equals $\frac{1}{13}$;
(D) cannot be determined from the given information.
Problem 8:
If $x=\log _{e}(\frac{1}{\sqrt{\tan 15^{\circ}}})$, then the value of $\frac{\sum_{n=0}^{\infty} e^{-2 n x}}{\sum_{n=0}^{\infty}(-1)^{n} e^{-2 n x}}$
equals
(A) $\sqrt{3}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$;
(D) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$.
Problem 9:
Define $f(x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) !}$ and $g(x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n) !}$, where $x$ is a real number.
Then
(A) $f(x)>g(x)$ for all $x$;
(B) $f(x)<g(x)$ for all $x$;
(C) $f(x)=g(x)$ for alt $x$;
(D) none of the above statements need necessarily hold for all $x$.
Problem 10:
The number of roots of the equation $ \sin \pi x=x^{2}-x+\frac{5}{4}$ is
(A) $0$;
(B) $1$;
(c) $2$;
(D) $4$.
Problem 11:
Let $P=(0, a), Q=(b, 0), R=(c, d),$ be three points such that $a, b, c$ and $d$ are all positive and the origin and the point $R$ are on the opposite sides of $P Q$. Then the area of the triangle $P Q R$ is equal to
(A) $\frac{a d+b c-a b}{2} ;$
(B) $\frac{a b+a c-b d}{2} ;$
(C) $\frac{a b+b d-a c}{2} ;$
(D) $\frac{a c+b d-a b}{2}$.
Problem 12:
Let $A_{1}, A_{2}, \cdots, A_{n}$ be the interior angles of an $n$ -sided convex polygon. Then the value of $\frac{\cos \left(A_{1}+A_{2}+\cdots+A_{k}\right)}{\cos \left(A_{k+1}+A_{k+2}+\cdots+A_{n}\right)}$ , where $\cos \left(\sum_{i=1}^{k} A_{i}\right) \neq 0$ for any $k=1,2, \ldots, n-1$
(A) is independent of both $k$ and $n$;
(B) is independent of $k$ but depends on $n$ :
(C) is independent of $n$ but depends on $k$ :
(D) depends on both $k$ and $n$.
Problem 13:
Let $S$ denote the set of all complex numbers of the form $\frac{z +1}{z-3}$ where $z$ varies over the set of all complex numbers with $|z| = 1$. Then
(A) the set $S$ is a straight line in the complex plane;
(B) the set $S$ is a circle of radius $\frac{1}{2}$ in the complex plane;
(C) the set $S$ is a circle of radius $\frac{1}{4}$ in the complex plane:
(D) the set $S$ is an ellipse with axes $\frac{1}{2}$ and $\frac{1}{4}$ in the complex plane.
Problem 14:
The value of $\int_{0}^{2 \pi}|1+2 \sin x| d x$ is
(A) $2 \pi ;$
(B) $\frac{2 \pi}{3}$;
(C) $4+\frac{\pi}{3}$ :
(D) $4 \sqrt{3}+\frac{2 \pi}{3}$.
Problem 15:
Let $f(x) =\begin{cases} 0 & \quad \text { if } x \leq 1 \\ \log_{2}x & \quad \text { if } x >1 \end
{cases}$
and let $f^{(2)}(x)=f(f(x)), f^{(3)}(x)=f\left(f^{(2)}(x)\right), \ldots,$ and generally, $f^{(n+1)}(x)= f\left(f^{(n)}(x)\right) . $Let $N(x)=\min \{n \geq 1: f^{(n)}(x)=0\}$.Then the value of $N(425268)$ is
(A) $4$;
(B) $5$;
(C)$6$;
(D) $7$
Problem 16:
Let $f$ be a positive differentiable function defined on $(0,\infty)$. Then
$\lim _{n \rightarrow \infty}\left(\frac{f\left(x+\frac{1}{n}\right)}{f(x)}\right)^{n}$
(A) equals $1$ ;
(B) equals $\frac{f^{\prime}(x)}{f(x)}$;
(C) equals $e^{\left(\frac{f^{\prime}(x)}{f(x)}\right)}$;
(D) may not exist for some $f$.
Problem 17:
Let $ABC$ be a right angled triangle with $BC =3$ and $AC = 4$. Let $D$ be a point on the hypotenuse $AB$ such that $\angle BCD = 30^{\circ}$. The length of $CD$ is
(A) $\frac{24}{3+4 \sqrt{3}}$;
(B) $\frac{3 \sqrt{3}}{2}$
(C) $6 \sqrt{3}-8$
(D) $\frac{25}{12}$.
Problem 18:
Let $a$ be a positive number. Then
$\lim _{n \rightarrow \infty}\left[\frac{1}{a+n}+\frac{1}{2 a+n}+\ldots+\frac{1}{a n+n}\right]$ equals
(A) 0
(B) $\log _{e}(1+a)$
(C) $\frac{1}{a} \log _{e}(1+a)$
(D) none of these expressions.
Problem 19:
The area of the region in the first quadrant bounded by the $x$-axis and the curves $y = 2-x^2$ and $x=y^{2}$ is
(A) $\frac{4 \sqrt{2}}{3}$;
(B) $\frac{4 \sqrt{2}}{3}-1$;
(C) $\frac{2}{3} \sqrt[4]{8}$;
(D) $1+\frac{2}{3} \sqrt[4]{8}$
Problem 20:
Let $f(x)$ be the function defined on the interval $(0,1)$ by
$f(x)=\begin{cases}x(1-x) & \text { if } x \text { is rational, } \\ \frac{1}{4}-x(1-x) & \text { if } x \text { is not rational }\end{cases}$.
Then $f$ is continuous
(A) at no point in $(0,1)$;
(B) at exactly one point in $(0,1)$;
(C) at exactly two points in (0,1);
(D) at more than two points in $(0,1)$.
Problem 21:
Consider a circle of radius $a$. Let $P$ be a point at a distance $b(>a)$ from the center of the circle. The tangents from the point $P$ to the circle meet the circle at $Q$ and $R$. Then the area of the triangle $PQR$ is
(A) $\frac{a\left(b^{2}-a^{2}\right)^{3 / 2}}{b^{2}}$;
(B)$\frac{a^{2} \sqrt{b^{2}-a^{2}}}{b}$;
(C) $\frac{b^{2} \sqrt{b^{2}-a^{2}}}{a}$;
(D) $\frac{b\left(b^{2}-a^{2}\right)^{3 / 2}}{a^{2}}$
Problem 22:
Suppose two complex numbers $z=a+i b$ and $w=c+i d$ satisfy the equation
$\frac{z+w}{z}=\frac{w}{z+w}$. Then
(A) both $a$ and $c$ are zero;
(B) both $b$ and $d$ are zero;
(C) both $b$ and $d$ must be non-zero;
(D) at least one of $b$ and $d$ is non-zero.
Problem 23:
$\lim _{n \rightarrow \infty}\{(1+\frac{1}{n})^{n}-(1+\frac{1}{n})\}^{-n}$ is
(A) $1$;
(B) $\frac{1}{e-1} ;$
(C) $1-e^{-1}$;
(D) $0$ .
Problem 24:
Let $f(x)=e^{x}$
$g(x)=\begin{cases} x^{2} & \text { if } x<1 / 2 \\ x-\frac{1}{4} & \text { if } x \geq 1 / 2
\end{cases}$
and $h(x)=f(g(x))$. The derivative of $h$ at $x=1 / 2$
(A) is $e$;
(B) is $e^{1 / 2}$;
(C) is $e^{1 / 4}$;
(D) does not exist.
Problem 25:
The value of
$\frac{2+6}{4^{100}}+\frac{2+2 \times 6}{4^{99}}+\frac{2+3 \times 6}{4^{94}}+\cdots+\frac{2+99 \times 6}{4^{2}}+\frac{2+100 \times 6}{4}$
is equals to
(A) $\frac{1}{3}(604-\frac{1}{4^{98}})$;
(B) $\frac{1}{3}(600-\frac{1}{4^{98}})$;
(C) $\frac{604}{3}$;
(D) $200$.
Problem 26:
Let $a, b$ and $c$ be the sides of a right-angled triangle, where $a$ is the hypotenuse.
Let $d$ be the diameter of the inscribed circle. Then
(A) $d+a = b+c$;
(B) $d+a < b+c$;
(C) $d+a > b+c$;
(D) none of the above relations need always be true.
Problem 27:
Let $P$ be a point in the first quadrant lying on the parabola $y=4-x^{2}$. Let $A B$ be the tangent to the parabola at $P$ menting the at $B$. If $O$ is the origin, then the minimeeting the $x$ -axis at $A$ and the $y$ -axis is
(A) $\frac{64}{3 \sqrt{3}}$;
(B) $\frac{32}{3 \sqrt{3}}$
(C) $64(3 \sqrt{3})$
(D) $32(3 \sqrt{3})$
Problem 28: The value of the expression
$$
\sum_{0 \leq i<j \leq n} \sum (-1)^{i-j+1}\left(\begin{array}{c}
n \\
i
\end{array}\right)\left(\begin{array}{c}
n \\
j
\end{array}\right)
$$ is
(A) $\left(\begin{array}{c}2 n-1 \\ n\end{array}\right)$;
(B) $\left(\begin{array}{l}2 n \\ n\end{array}\right)$;
(C) $\left(\begin{array}{c}2 n+1 \\ n\end{array}\right)$;
(D) none of these expressions
Problem 29:
A man standing at a point $O$ finds that a balloon at a height $h$ metres due east of him has an angle of elevation $60^{\circ}$. He walks due north while the balloon moves north-west $\left(45^{\circ}\right.$ west of north) remaining at the same height. After he has walked $100$ metres the balloon is vertically above him. Then the value of $h$ in metres is
(A) $50$ ;
(B) $50 \sqrt{3}$
(C) $100 \sqrt{3}$;
(D) $\frac{100}{\sqrt{3}}$
Problem 30:
About the dolls in a shop a customer said "It is not true that some dolls have neither black hair nor blue eyes". The customer means that
(A) some dolls have both black hair and blue eyes;
(R) all dolls have both black hair and blue eyes;
(c) some dolls have either black hair or blue eyes;
(n) all dolls have either black hair or blue eyes.
Solutions for Test of Mathematics at the 10 +2 Level