How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

B.Math 2009 Objective Paper| Problems & Solutions

Problem 1: 

The domain of definition of $f(x)=-\log \left(x^{2}-2 x-3\right)$ is

(a) $(0, \infty)$
(b) $(-\infty,-1)$
(c) $(-\infty,-1) \cup(3, \infty)$
(d) $(-\infty,-3) \cup(1, \infty)$

Problem 2:

$A B C$ is a right-angled triangle with the right angle at B. If $A B=7$ and $B C=24$, then the length of the perpendicular from $B$ to $A C$ is

(a) $12.2$
(b) $6.72$
(c) $7.2$
(d) $3.36$

Problem 3:

If the points $\mathbf{z_{1}}$ and $\mathbf{z_{2}}$ are on the circles $|\mathbf{z}|=2$ and $|\mathbf{z}|=3$ respectively and the angle included between these vectors is $60^{\circ}$, then $\left|\left(\mathbf{z_{1}}+\mathbf{z_{2}}\right) /\left(\mathbf{z_{1}}-\mathbf{z_{2}}\right)\right|$ equals

(a) $\sqrt{(19 / 7)}$
(b) $\sqrt{19}$
(c) $\sqrt{7}$
(d) $\sqrt{133}$

Problem 4: 

Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{d}$ be positive integers such that $\log \mathrm{a}(\mathbf{b})=\mathbf{3 / 2}$ and
$\log (\mathrm{d})=5 / 4 .$ If $\mathrm{a}-\mathrm{c}=9$, then $b-d$ equals

(a) 55

(b) 23
(c) 89
(d) 93

Problem 5 :

$1-x-e^{-x}>0$ for :
(a) All $\mathbf{x} \in \mathbf{R}$.
(b) No $\mathbf{x} \in \mathbf{R}$.
(c) $x>0$.
(d) $x<0 .$

Problem 6 :

If $P(x)=a x^{2}+b x+c$ and $Q(x)=-a x^{2}+b x+c$ where $a c \neq 0$, then the equation $\mathbf{P}(\mathbf{x}) Q(\mathbf{x})=0$ has :
(a) Only real roots.
(b) No real roots.
(c) At least two real roots.
(d) Exactly two real roots.

Problem 7:

$\lim \mid \sqrt{\left(x^{2}+x\right)-x \mid}$ as x $\rightarrow \infty$ is equal to
(a) $1 / 2$
(b) 0
(c) $\infty$
(d) 2

Problem 8:

$\mathrm{lim}\left(\mathrm{n} / 2^{\mathrm{n}}\right) \Sigma \sin \left(\mathrm{jn} / 2^{n}\right)$ where $j$ runs from 1 to $2^{n}$ as $n \rightarrow \infty$ is equal
(a) 0
(b) $\Pi$
(c) 2
(d) 1

Problem 9:

Let f: $\mathbf{R} \rightarrow \mathbf{R}$ is given by $\mathbf{f}(\mathbf{x})=\mathbf{x}(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{1})$. Then,
(a) $f$ is $1-1$ and onto
(b) $\mathbf{f}$ is neither $\mathbf{1}-\mathbf{1}$ nor onto
(c) $f$ is $1-1$ but not onto
(d) $f$ is onto but not $1-1$

Problem 10:

The last digit of $22^{22}$ is :
(a) $2$
(b) $4$
(c) $6$
(d) $0$

Problem 11:

The average scores of $10$ students in a test is $25$. The lowest score is $20$. Then the highest score is at most
(a) $100$
(b) $30$
(c) $70$
(d) $75$

Problem 12:

The coefficient of $t^{3}$ in the expansion of $\{(1-t^{6}) /(1-t)\}^{3}$ is
(a) $10$
(b) $12$
(c) $8$
(d) $9$

problem 13:

Let $p_{n}(x), n \geq 0$ be polynomials defined by $p_{0}(x)=1, p_{1}(x)=x$ and

${P_{n}}(x)=x p_{n-1}(x)- p_{n-2}(x)$ for $n \geq 2$. Then $\mathbf{p}_{10}(\mathbf{x})$ equals

(a) $0$
(b) $10$
(c) $1$
(d) $-1$

Problem 14:

Suppose $A, B$ are matrices satisfying $A B+B A=0$. Then $A^{2} B^{5}$ is equal to
(a) 0
(b) $\mathrm{B}^{2} \mathrm{~A}^{5}$
(c) $-\mathrm{B}^{2} \mathrm{~A}^{5}$
(d) $A B$

Problem 15:

The number of terms in the expansion of $(x+y+z+w)^{2 0 0 9}$

(a) $2009_\mathrm{C_{4}}$

(b) $2013 _\mathrm{C_{4}}$
(c) $2012_\mathrm{ C_{3}}$
(d) $(2010)^{4}$

Problem 16:

If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are positive real numbers satisfying $\mathbf{a b}+\mathbf{b c}+\mathbf{c a}=\mathbf{1 2}$,

then the maximum value of $\mathrm{abc}$ is
(a) 8
(b) 9
(c) 6
(d) 12

Problem 17:

If at least $90$ percent students in a class are good in sports, and at least $80$ percent are good in music and at least $70$ percent are good in studies, then the percentage of students who are good in all three is at least
(a) $25$
(b) $40$
(c) $20$
(d) $50$

Problem 18:

If $\cot \{\sin ^{-1} \sqrt{(13 / 17)}\}=\sin (\tan ^{-1} \theta).$, then $\theta$ is

(a) $2 / \sqrt{17}$
(b) $\sqrt{(} 13 / 17)$
(c) $\sqrt{(2 / \sqrt{13})}$
(d) 2/3

Problem 19:

Let $f(t)=(t+1) /(t-1) .$ Then $f(f(2010))$ equals
(a) $2011 / 2009$
(b) 2010
(c) $2010 / 2009$
(d) None of the above

Problem 20:

If each side of a cube is increased by $60 \%$, then the surface area of the cube increased by
(a) $156 \%$
(b) $160 \%$
(c) $120 \%$
(d) $240 \%$

Problem 21:

If $\mathbf{a}>\mathbf{2}$, then

(a) $\log {e}(a)+\log {a}(10)<0$

(b) $\log {e}(a)+\log {a}(10)>0$
(c) $e^{a}<1$
(d) None of the above is true.

Problem 22:

The number of complex numbers w such that $|\mathbf{w}|=1$ and imaginary part of $\mathrm{w}^{4}$ is 0 , is
(a) 4
(b) 2
(c) 8
(d) Infinite

Problem 23:

Let $f(x)=csin(x)$ for all $x \in R .$ Suppose $f(x)=\sum f(x+k n) / 2^{k}$
(summation is running from $\mathbf{k}=1$ to $\mathbf{k}=\infty)$ for all $\mathbf{x} \in \mathbf{R}$. Then
(a) $c=1$
(b) $c=0$
(c) $c<0$
(d) $c=-1$

Problem 24:

The number of points at which the function $f(x)=\max (1+x, 1-$ $x$ ) if $x<0$ and $f(x)=\min \left(1+x, 1+x^{2}\right)$ if $x \geq 0$ is not differentiable, is
(a) 1
(b) 0
(c) 2
(d) None of the above.

Problem 25:

The greatest value of function $f(x)=\sin ^{2}(x) \cos (x)$

(a) $2 / 3 \sqrt{3}$
(b) $\sqrt{(2 / 3)}$
(c) $2 / 9$
(d) $\sqrt{2} / 3 \sqrt{3}$

problem 26:

Let $g(t)=\int\left(x^{2}+1\right)^{10} d x$ (integration running from $-10$ to $\left.t\right)$ for all $\mathbf{t} \geq-10$. Then
(a) $g$ is not differentiable.
(b) $\mathbf{g}$ is constant.
(c) $\mathbf{g}$ is increasing in $(-10, \infty)$.
(d) $\mathbf{g}$ is decreasing in $(-10, \infty)$.

Problem 27:

Let $\mathbf{p}(\mathbf{x})$ be a continuous function which is positive for all $\mathbf{x}$ and $\int p(x) d x=c \int p{(x+4) / 2} d x$ (first integration is running from 2 to 3 and second integration running from 0 to 2). Then
(a) $c=4$
(b) $c=1 / 2$
(c) $c=1 / 4$
(d) $c=2$

Problem 28:

Let $\mathrm{f}:[0,1] \rightarrow(1, \infty)$ be a continuous function. Let $g(x)=1 / x$ for $x>0$. Then, the equation $f(x)=g(x)$ has
(a) No solution.
(b) All points in $(0,1]$ as solutions.
(c) At least one solution.
(d) None of the above.

Problem 29:

Let $0 \leq \theta, \Phi<2 n$ be two angles. Then the equation $\sin \theta+\sin \phi=\cos \theta+\cos \Phi$
(a) Determines $\Theta$ uniquely in terms of $\Phi$
(b) Gives two value of $\Theta$ for each value of $\boldsymbol{\Phi}$
(c) Gives more than two values of $\Theta$ for each value of $\Phi$
(d) None of the above.

Problem 30:

Ten players are to pay a tennis tournament. The number of pairings for the first round is

(a) $10 ! / 2^{5} 5 !$
(b) $2^{10}$
(c) $10_{C _{2}}$
(d) $10_{\mathrm{P}_{2}}$

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.