 # Understand the problem

Show that among all quadrilaterals of a given perimeter the square has the largest area.

Geometry
Easy
##### Suggested Book
An Excursion in Mathematics

Do you really need a hint? Try it first!

Start with a quadrilateral with sides $a,b,c$ and $d$. Divide it into two triangles and write its area as the sum of the areas of the triangles.
Show that the area $A$ satisfies $A\le\frac{ab+cd}{2}$ and $A\le\frac{ad+bc}{2}$.
Using hint 2, derive that $A\le \frac{(a+c)(b+d)}{2}$.
From the AM-GM inequality, we can write that $(a+c)(b+d)\le\frac{(a+b+c+d)^2}{4}$. Hence $\text{Area}\le\frac{(\text{Perimetre)^2}{8}$. Equality is achieved iff all the angles are right angles (this follows from hint 1) and $a+c=b+d$. If all the angles are right angles then the quadrilateral is a rectangle and hence $a=c$ and $b=d$. Finally, $a=b=c=d$. Thus the area is maximised for a square.

# Connected Program at Cheenta

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

# Similar Problems

## Measure of angle | AMC 10A, 2019| Problem No 13

Try this beautiful Problem on Geometry from AMC 10A, 2019.Problem-13. You may use sequential hints to solve the problem.

## Sum of Sides of Triangle | PRMO-2018 | Problem No-17

Try this beautiful Problem on Geometry from PRMO -2018.You may use sequential hints to solve the problem.

## Recursion Problem | AMC 10A, 2019| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-15, You may use sequential hints to solve the problem.

## Roots of Polynomial | AMC 10A, 2019| Problem No 24

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-24, You may use sequential hints to solve the problem.

## Set of Fractions | AMC 10A, 2015| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2015. Problem-15. You may use sequential hints to solve the problem.

## Indian Olympiad Qualifier in Mathematics – IOQM

Due to COVID 19 Pandemic, the Maths Olympiad stages in India has changed. Here is the announcement published by HBCSE: Important Announcement [Updated:14-Sept-2020]The national Olympiad programme in mathematics culminating in the International Mathematical Olympiad...

## Positive Integers and Quadrilateral | AMC 10A 2015 | Sum 24

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2015. Problem-24. You may use sequential hints to solve the problem.

## Rectangular Piece of Paper | AMC 10A, 2014| Problem No 22

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2014. Problem-23. You may use sequential hints to solve the problem.

## Probability in Marbles | AMC 10A, 2010| Problem No 23

Try this beautiful Problem on Probability from AMC 10A, 2010. Problem-23. You may use sequential hints to solve the problem.

## Points on a circle | AMC 10A, 2010| Problem No 22

Try this beautiful Problem on Number theory based on Triangle and Circle from AMC 10A, 2010. Problem-22. You may use sequential hints to solve the problem.