Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Arithmetic Sequence | AMC 10B, 2003 | Problem No. 24

Problem - Arithmetic Sequence (AMC 10)


The first four terms in an arithmetic sequence are  \( x+y\) , \( x-y\) xy , \(\frac {x}{y}\) in that order. What is the fifth term?

  • \(\frac{12}{110}\)
  • \(\frac {123}{40}\)
  • \(\frac {16}{17}\)
  • 20

Key Concepts


Arithmetic Sequence

Series and Sequence

Algebra

Check the Answer


Answer: \(\frac {123}{40}\)

American Mathematics Competition

Challenges and Thrills - Pre - College Mathematics

Try with Hints


Here is the first hint to start this sum:

There is a very easy method to do this sum

At first we can try to find the difference between two consecutive terms which is

\( (x-y) - (x+y) = -2y \)

So after that we can understand the third and forth terms in terms of x and y.

They can be : \( ( x-3y ) \) and \( ( x - 5y )\)

Now try to do rest of the sum......................................

If you got stuck after the first hint you can use this :

Though we from our solution we find the other two terms to be \((x-3y)\) and \((x-5y)\)

but from the question we find that the other two terms are \(xy\) and \(\frac {x}{y}\)

So both are equal.Thus ,

\(xy = x - 3y\)

\( xy - x = - 3y \)

\( x (y - 1) = -3y \)

\( x = \frac {-3y}{ y - 1} \) .................................(1)

Again , similarly

\(\frac {x}{y} = x -5y \)

Now considering the equation (1) we can take the value of \(\frac {x}{y}\)

\(\frac {-3}{y - 1}= \frac {-3y}{y -1} - 5y \) .........................(2)

\( -3 = -3y - 5y(y-1) \)

\( 0 = 5y^2 - 2y - 3\)

\( 0 = ( 5y +3)(y-1)\)

\( y = - \frac {3}{5} , 1\)

We are almost there with the answer. Try to find the answer.....

Now from the last hint we find the value of \( y = - \frac {3}{5} , 1\)

But we cannot consider the value of y to be 1 as the 1st and 2 nd terms would be \(x+1\) and \(x-1)\) but last two terms will be equal to x .

So the value of y be \(- \frac {3}{5}\) and substituting the value of y in either \(eq^n\) (1) or \(eq^n\) (2) we get x = -\(\frac {9}{8}\)

so , \(\frac {x}{y} -2y = \frac {9.5}{8.3} + \frac {6}{5} \)

= \(\frac {123}{40} \) (Answer )

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com