 How Cheenta works to ensure student success?
Explore the Back-Story

# Arithmetic Mean | AIME I, 2015 | Question 12 Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2015 based on Arithmetic Mean.

## Arithmetic Mean of Number Theory - AIME 2015

Consider all 1000-element subsets of the set {1, 2, 3, … , 2015}. From each such subset choose the least element. The arithmetic mean of all of these least elements is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p + q$.

• is 107
• is 431
• is 840
• cannot be determined from the given information

### Key Concepts

Inequalities

Algebra

Number Theory

AIME, 2015, Question 12

Elementary Number Theory by David Burton

## Try with Hints

Each 1000-element subset ${ a_1, a_2,a_3,…,a_{1000}}$ of ${1,2,3,…,2015}$ with $a_1<a_2<a_3<…<a_{1000}$ contributes $a_1$ to sum of least element of each subset and set ${a_1+1,a_2+1,a_3+1,…,a_{1000}+1}$. $a_1$ ways to choose a positive integer $k$ such that $k<a_1+1<a_2+1,a_3+1<…<a_{1000}+1$ ($k$ can be anything from $1$ to $a_1$ inclusive

Thus, the number of ways to choose the set ${k,a_1+1,a_2+1,a_3+1,…,a_{1000}+1}$ is equal to the sum. But choosing a set ${k,a_1+1,a_2+1,a_3+1,…,a_{1000}+1}$ is same as choosing a 1001-element subset from ${1,2,3,…,2016}$!

average =$\frac{2016}{1001}$=$\frac{288}{143}$. Then $p+q=288+143={431}$

## Subscribe to Cheenta at Youtube

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2015 based on Arithmetic Mean.

## Arithmetic Mean of Number Theory - AIME 2015

Consider all 1000-element subsets of the set {1, 2, 3, … , 2015}. From each such subset choose the least element. The arithmetic mean of all of these least elements is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p + q$.

• is 107
• is 431
• is 840
• cannot be determined from the given information

### Key Concepts

Inequalities

Algebra

Number Theory

AIME, 2015, Question 12

Elementary Number Theory by David Burton

## Try with Hints

Each 1000-element subset ${ a_1, a_2,a_3,…,a_{1000}}$ of ${1,2,3,…,2015}$ with $a_1<a_2<a_3<…<a_{1000}$ contributes $a_1$ to sum of least element of each subset and set ${a_1+1,a_2+1,a_3+1,…,a_{1000}+1}$. $a_1$ ways to choose a positive integer $k$ such that $k<a_1+1<a_2+1,a_3+1<…<a_{1000}+1$ ($k$ can be anything from $1$ to $a_1$ inclusive

Thus, the number of ways to choose the set ${k,a_1+1,a_2+1,a_3+1,…,a_{1000}+1}$ is equal to the sum. But choosing a set ${k,a_1+1,a_2+1,a_3+1,…,a_{1000}+1}$ is same as choosing a 1001-element subset from ${1,2,3,…,2016}$!

average =$\frac{2016}{1001}$=$\frac{288}{143}$. Then $p+q=288+143={431}$

## Subscribe to Cheenta at Youtube

This site uses Akismet to reduce spam. Learn how your comment data is processed.

### Knowledge Partner  