Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2000 based on Arithmetic and geometric mean with Algebra.

Arithmetic and geometric mean with Algebra – AIME 2000


Find the number of ordered pairs (x,y) of integers is it true that \(0 \lt y \lt 10^{6}\) and that the arithmetic mean of x and y is exactly 2 more than the geometric mean of x and y.

  • is 107
  • is 997
  • is 840
  • cannot be determined from the given information

Key Concepts


Algebra

Equations

Ordered pair

Check the Answer


But try the problem first…

Answer: is 997.

Source
Suggested Reading

AIME, 2000, Question 3

Elementary Algebra by Hall and Knight

Try with Hints


First hint

 given that \(\frac{x+y}{2}=2+({xy})^\frac{1}{2}\) then solving we have \(y^\frac{1}{2}\)-\(x^\frac{1}{2}\)=+2 and-2

Second Hint

given that \(y \gt x\) then \(y^\frac{1}{2}\)-\(x^\frac{1}{2}\)=+2 and here maximum integer value of \(y^\frac{1}{2}\)=\(10^{3}-1\)=999 whose corresponding \(x^\frac{1}{2}\)=997 and decreases upto \(y^\frac{1}{2}\)=3 whose corresponding \(x^\frac{1}{2}\)=1

Final Step

then number of pairs (\(x^\frac{1}{2}\),\(y^\frac{1}{2}\))=number of pairs of (x,y)=997.

.

Subscribe to Cheenta at Youtube