Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Area of Triangle and Integer | PRMO 2019 | Question 29

Try this beautiful problem from the PRMO, 2019 based on area of triangle and nearest integer.

Area of triangle and integer - PRMO 2019


In a triangle ABC, the median AD (with D on BC) and the angle bisector BE (with E on AC) are perpendicular to each other, if AD=7 and BE=9, find the integer nearest to the area of triangle ABC

Area of Triangle and integer
  • is 107
  • is 47
  • is 840
  • cannot be determined from the given information

Key Concepts


Angles

Triangles

Integer

Check the Answer


Answer: is 47.

PRMO, 2019, Question 29

Geometry Vol I to IV by Hall and Stevens

Try with Hints


First hint

let AD and BE meet at F angle ABF =angleFBD=\(\frac{B}{2}\) angle AFB=angle BFD=90 (in degrees), BF is common with triangles ABF and BFD then triangle ABF is congruent to triangle BFD,AF=FD=\(\frac{7}{2}\) where AF=FD

Second Hint

AB=BD then\(\frac{AB}{BC}=\frac{AB}{BD+CD}=\frac{AB}{2BD}=\frac{1}{2}\) where AB=BD \(\frac{AE}{EC}\)=\(\frac{AB}{BC}\)=\(\frac{1}{2}\)

Final Step

\(\frac{area triangle ABC}{area triangle ABE}=\frac{3}{1}\) then \(area triangle ABC=3area triangle ABE\)=\((3)(\frac{1}{2} \times AF \times BE)=\frac{3}{2} \times \frac{7}{2} \times 9\)=47.25 then nearest integer=47.

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com