Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Area of the Trapezium | AMC-10A, 2018 | Problem 24

Try this beautiful problem from Geometry based on the Area of the Trapezium.

Area of the Trapezium - AMC-10A, 2018- Problem 24


Triangle $ABC$ with $AB=50$ and $AC=10$ has area $120$. Let $D$ be the midpoint of $\overline{AB}$, and let $E$ be the midpoint of $\overline{AC}$. The angle bisector of $\angle BAC$ intersects $\overline{DE}$ and $\overline{BC}$ at $F$ and $G$, respectively. What is the area of quadrilateral $FDBG$?

  • $79$
  • $ 75$
  • $82$

Key Concepts


Geometry

Triangle

Trapezium

Check the Answer


Answer: $75$

AMC-10A (2018) Problem 24

Pre College Mathematics

Try with Hints


Area of the Trapezium

We have to find out the area of BGFD.Given that AG is the angle bisector of \(\angle BAC\) ,\(D\) and \(E\) are the mid points of \(AB\) and \(AC\). so we may say that \(DE ||BC\) by mid point theorm...

So clearly BGFD is a Trapezium.now area of the trapezium=\(\frac{1}{2} (BG+DF) \times height betwween DF and BG\)

can you find out the value of \(BG,DF \) and height between them....?

Can you now finish the problem ..........

Area of the Trapezium- Problem

Let $BC = a$, $BG = x$, $GC = y$, and the length of the perpendicular to $BC$ through $A$ be $h$.

Therefore area of \(\triangle ABC\)=\(\frac{ah}{2}\)=\(120\)....................(1)

From the angle bisector theorem, we have that\(\frac{50}{x} = \frac{10}{y}\) i.e \(\frac{x}{y}=5\)

Let \(BC\)=\(a\) then \(BG\)=\(\frac{5a}{6}\) and \(DF\)=\(\frac{1}{2 } \times BG\) i.e \(\frac{5a}{12}\)

now can you find out the area of Trapezium and area of Triangle?

can you finish the problem........

Area of the shaded portion

Therefore area of the Trapezium=\(\frac{1}{2} (BG+DF) \times FG\)=\(\frac{1}{2} (\frac{5a}{6}+\frac{5a}{12}) \times \frac{h}{2}\)=\(\frac{ah}{2} \times \frac{15}{24}\)=\(120 \times \frac{15}{24}\)=\(75\) \((from ........(1))\)

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com