 How Cheenta works to ensure student success?
Explore the Back-Story

# Area of square and circle | AMC 8, 2011|Problem 25 Try this beautiful problem from Geometry based on Ratio of the area of square and circle.

## Area of the star and circle - AMC-8, 2011 - Problem 25

A circle with radius 1 is inscribed in a square and circumscribed about another square as shown. Which fraction is closest to the ratio of the circle's shaded area to the area between the two squares?

• $\frac{3}{2}$
• $\frac{1}{2}$
• $1$

Geometry

Circle

Square

## Check the Answer

Answer:$\frac{1}{2}$

AMC-8 (2011) Problem 25

Pre College Mathematics

## Try with Hints

Join the diagonals of the smaller square (i.e GEHF)

Can you now finish the problem ..........

The circle's shaded area is the area of the smaller square(i.e. GEHF) subtracted from the area of the circle

and The area between the two squares is Area of the square ABCD - Area of the square EFGH

can you finish the problem........

Given that the Radius of the circle with centre O is 1.Therefore The area of the circle is $\pi (1)^2$=$\pi$ sq.unit

The diameter of the circle is 2 i.e $EF=BC=2$ unit

The area of the big square i.e $ABCD=2^2=4$ sq.unit

$OE=OH=1$ i.e $EH=\sqrt{(1^2+1^2)}=\sqrt 2$

Therefore the area of the smaller square is $(\sqrt 2)^2=2$

The circle's shaded area is the area of the smaller square(i.e. GEHF) subtracted from the area of the circle =$\pi$ - 2

The area between the two squares is Area of the square ABCD - Area of the square EFGH=4-2=2 sq.unit

The ratio of the circle's shaded area to the area between the two squares is $\frac{\pi - 2}{2} \approx \frac{3.14-2}{2} = \frac{1.14}{2} \approx \frac{1}{2}$

## Subscribe to Cheenta at Youtube

Try this beautiful problem from Geometry based on Ratio of the area of square and circle.

## Area of the star and circle - AMC-8, 2011 - Problem 25

A circle with radius 1 is inscribed in a square and circumscribed about another square as shown. Which fraction is closest to the ratio of the circle's shaded area to the area between the two squares?

• $\frac{3}{2}$
• $\frac{1}{2}$
• $1$

Geometry

Circle

Square

## Check the Answer

Answer:$\frac{1}{2}$

AMC-8 (2011) Problem 25

Pre College Mathematics

## Try with Hints

Join the diagonals of the smaller square (i.e GEHF)

Can you now finish the problem ..........

The circle's shaded area is the area of the smaller square(i.e. GEHF) subtracted from the area of the circle

and The area between the two squares is Area of the square ABCD - Area of the square EFGH

can you finish the problem........

Given that the Radius of the circle with centre O is 1.Therefore The area of the circle is $\pi (1)^2$=$\pi$ sq.unit

The diameter of the circle is 2 i.e $EF=BC=2$ unit

The area of the big square i.e $ABCD=2^2=4$ sq.unit

$OE=OH=1$ i.e $EH=\sqrt{(1^2+1^2)}=\sqrt 2$

Therefore the area of the smaller square is $(\sqrt 2)^2=2$

The circle's shaded area is the area of the smaller square(i.e. GEHF) subtracted from the area of the circle =$\pi$ - 2

The area between the two squares is Area of the square ABCD - Area of the square EFGH=4-2=2 sq.unit

The ratio of the circle's shaded area to the area between the two squares is $\frac{\pi - 2}{2} \approx \frac{3.14-2}{2} = \frac{1.14}{2} \approx \frac{1}{2}$

## Subscribe to Cheenta at Youtube

This site uses Akismet to reduce spam. Learn how your comment data is processed.

### Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy  