What is the NO-SHORTCUT approach for learning great Mathematics?

Learn MoreFor Students who are passionate for Mathematics and want to pursue it for higher studies in India and abroad.

Try this beautiful Geometry Problem based on area of region from AMC 10 B, 2016. You may use sequential hints to solve the problem.

What is the area of the region enclosed by the graph of the equation $x^{2}+y^{2}=|x|+|y| ?$

,

- $\pi+\sqrt{2}$
- $\pi+2$
- $\pi+2 \sqrt{2}$
- $2 \pi+\sqrt{2}$
- $2 \pi+2 \sqrt{2}$

Geometry

Semi circle

graph

Pre College Mathematics

AMC-10B, 2016 Problem-21

$\pi+2$

The given equation is $x^{2}+y^{2}=|x|+|y|$. Expanding this equation we get four equation as mod exist here...

$x^2+y^2-x-y=0$.......................(1)

$x^2+y^2+x+y=0$....................(2)

$x^2+y^2-x+y=0$.....................(3)

$x^2+y^2+x-y=0$.....................(4)

using this four equation can you draw the figure ?

Now can you finish the problem?

now four equations can be written as $x^{2}-x+y^{2}-y=0 \Rightarrow\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{\sqrt{2}}{2}\right)^{2}$

$x^{2}+x+y^{2}+y=0 \Rightarrow\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\left(\frac{\sqrt{2}}{2}\right)^{2}$

$x^{2}-x+y^{2}+y=0 \Rightarrow\left(x-\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\left(\frac{\sqrt{2}}{2}\right)^{2}$

$x^{2}+x+y^{2}-y=0 \Rightarrow\left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{\sqrt{2}}{2}\right)^{2}$ which represents four circles and they overlapping.....

The center of the four circles are $\left(\frac{1}{2}, \frac{1}{2}\right)$, $\left(\frac{-1}{2}, \frac{-1}{2}\right)$,$\left(\frac{1}{2}, \frac{-1}{2}\right)$,$\left(\frac{-1}{2}, \frac{1}{2}\right)$Now we have to find out the region union of the four circles.

Now can you finish the problem?

There are several ways to find the area, but note that if you connect (0,1),(1,0),(-1,0),(0,-1) to its other three respective points in the other three quadrants, you get a square of area 2 , along with four half-circles of diameter $\sqrt{2}$, for a total area of $2+2 \cdot\left(\frac{\sqrt{2}}{2}\right)^{2} \pi=\pi+2$

- https://www.cheenta.com/surface-area-of-cube-amc-10a-2007-problem-21/
- https://www.youtube.com/watch?v=OvduZbqenWU

What to do to shape your Career in Mathematics after 12th?

From the video below, let's learn from Dr. Ashani Dasgupta (a Ph.D. in Mathematics from the University of Milwaukee-Wisconsin and Founder-Faculty of Cheenta) how you can shape your career in Mathematics and pursue it after 12th in India and Abroad. These are some of the key questions that we are discussing here:

- What are some of the best colleges for Mathematics that you can aim to apply for after high school?
- How can you strategically opt for less known colleges and prepare yourself for the best universities in India or Abroad for your Masters or Ph.D. Programs?
- What are the best universities for MS, MMath, and Ph.D. Programs in India?
- What topics in Mathematics are really needed to crack some great Masters or Ph.D. level entrances?
- How can you pursue a Ph.D. in Mathematics outside India?
- What are the 5 ways Cheenta can help you to pursue Higher Mathematics in India and abroad?

Cheenta has taken an initiative of helping College and High School Passout Students with its "Open Seminars" and "Open for all Math Camps". These events are extremely useful for students who are really passionate for Mathematic and want to pursue their career in it.

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google