 How Cheenta works to ensure student success?
Explore the Back-Story

# Area of Circle Problem | AMC 8, 2008 | Problem 25 Try this beautiful problem from Geometry based on the Area of a Circle.

## Area of Circle | AMC-8, 2008 | Problem 25

Margie's winning art design is shown. The smallest circle has radius  2 inches, with each successive circle's radius increasing by 2 inches. Approximately what percent of the design is black?

• $44$
• $42$
• $45$

Geometry

Area

Circle

## Check the Answer

Answer:$42$

AMC-8, 2008 problem 25

Pre College Mathematics

## Try with Hints

Area of the square is $\pi (r)^2$,where $r$=radius of the circle

Can you now finish the problem ..........

Find the total area of the black region........

can you finish the problem........

Given that The smallest circle has radius  2 inches, with each successive circle's radius increasing by 2 inches .

The radius of the 1st circle is 2, So the area is $\pi(2)^2$=4$\pi$ sq.unit

The radius of the 2nd circle is 4, So the area is $\pi(4)^2$=16$\pi$ sq.unit

The radius of the 3rd circle is 6 So the area is $\pi(6)^2$=36$\pi$ sq.unit

The radius of the 4th circle is 8, So the area is $\pi(8)^2$=64$\pi$ sq.unit

The radius of the 5th circle is 10, So the area is $\pi(10)^2$=100$\pi$ sq.unit

The radius of the 6th circle is 12, So the area is $\pi(12)^2$=144$\pi$ sq.unit

Therefore The entire circle's area is 144$\pi$

The area of the black regions is $(100\pi-64\pi)+(36\pi-16\pi)+4\pi=60\pi$sq.unit

The percentage of the design that is black is  $(\frac{60\pi}{144\pi} \times 100)\%=(\frac{5}{12} \times 100) \% \approx 42\%$

## Subscribe to Cheenta at Youtube

Try this beautiful problem from Geometry based on the Area of a Circle.

## Area of Circle | AMC-8, 2008 | Problem 25

Margie's winning art design is shown. The smallest circle has radius  2 inches, with each successive circle's radius increasing by 2 inches. Approximately what percent of the design is black?

• $44$
• $42$
• $45$

Geometry

Area

Circle

## Check the Answer

Answer:$42$

AMC-8, 2008 problem 25

Pre College Mathematics

## Try with Hints

Area of the square is $\pi (r)^2$,where $r$=radius of the circle

Can you now finish the problem ..........

Find the total area of the black region........

can you finish the problem........

Given that The smallest circle has radius  2 inches, with each successive circle's radius increasing by 2 inches .

The radius of the 1st circle is 2, So the area is $\pi(2)^2$=4$\pi$ sq.unit

The radius of the 2nd circle is 4, So the area is $\pi(4)^2$=16$\pi$ sq.unit

The radius of the 3rd circle is 6 So the area is $\pi(6)^2$=36$\pi$ sq.unit

The radius of the 4th circle is 8, So the area is $\pi(8)^2$=64$\pi$ sq.unit

The radius of the 5th circle is 10, So the area is $\pi(10)^2$=100$\pi$ sq.unit

The radius of the 6th circle is 12, So the area is $\pi(12)^2$=144$\pi$ sq.unit

Therefore The entire circle's area is 144$\pi$

The area of the black regions is $(100\pi-64\pi)+(36\pi-16\pi)+4\pi=60\pi$sq.unit

The percentage of the design that is black is  $(\frac{60\pi}{144\pi} \times 100)\%=(\frac{5}{12} \times 100) \% \approx 42\%$

## Subscribe to Cheenta at Youtube

This site uses Akismet to reduce spam. Learn how your comment data is processed.

### Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy  