Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Area of a Triangle | AMC-8, 2000 | Problem 25

Try this beautiful problem from Geometry: Area of a Triangle

Area of the Triangle- AMC-8, 2000- Problem 25


The area of rectangle \(ABCD\) is \(72\) units squared. If point \(A\) and the midpoints of \(BC\) and \(CD\) are joined to form a triangle, the area of that triangle is

Area of a Triangle
  • \(25\)
  • \(27\)
  • \(29\)

Key Concepts


Geometry

Triangle

square

Check the Answer


Answer: \(27\)

AMC-8 (2000) Problem 25

Pre College Mathematics

Try with Hints


Area of the triangle =\(\frac{1}{2} \times base \times height \)

Can you now finish the problem ..........

Area of Shaded Triangle

Therefore area of the shaded region i.e area of the \(\triangle AEF\)=area of the square- area of \((\triangle ADE +\triangle EFC +\triangle ABF)\)

can you finish the problem........

Area of Shaded Triangle

Given that area of the rectangle ABCD=72

Let length AB=\(x\) and length of CD=\(y\)

Therefore DE=EC=\(\frac{y}{2}\) and BF=FC=\(\frac{x}{2}\)

Area of ABCD=\(xy\)=72

Area of the \(\triangle ADE=\frac{1}{2}\times DE \times AD= \frac{1}{2}\times \frac{x}{2} \times y =\frac{xy}{4}=\frac{72}{4}=18\)

Area of the \(\triangle EFC=\frac{1}{2}\times EC \times FC= \frac{1}{2}\times \frac{x}{2} \times \frac{y}{2} =\frac{xy}{8}=\frac{72}{8}=9\)

Area of the \(\triangle ABF=\frac{1}{2}\times AB \times BF= \frac{1}{2}\times y\times \frac{x}{2}=\frac{xy}{4}=\frac{72}{4}=18\)

Therefore area of the shaded region i.e area of the \(\triangle AEF\)=area of the square- area of \((\triangle ADE +\triangle EFC +\triangle ABF)=72-(18+8+18)=27\)

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com