INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

June 16, 2020

Area of a part of circle | PRMO 2017 | Question 26

Try this beautiful problem from the Pre-RMO, 2017, Question 26, based on Area of part of circle.

Area of part of circle - Problem 26

Let AB and CD be two parallel chords in a circle with radius 6 such that the centre O lies between these chords. Suppose AB=6 and CD=8. Suppose further that the area of the part of the circle lying between the chords AB and CD is \(\frac{m\pi+n}{k}\) where m.n.k are positive integers with gcd(m,n,k)=1. What is the value of m+n+k?

  • is 107
  • is 75
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

Answer: is 75.

PRMO, 2017, Question 26

Higher Algebra by Hall and Knight

Try with Hints

First hint

A=2[\(\frac{1}{2} \times 25 \times \theta\)]+\(\frac{1}{2} \times 3 \times 8\)+\(\frac{1}{2} \times 4 \times 6\)

where \(\theta=[\pi-(\theta_1+\theta_2)]=[\pi-(tan^{-1}\frac{4}{3}+tan^{-1}\frac{3}{4})]\)

Area of a part of circle

Second Hint

or, \(\theta=\frac{\pi}{2}\)

or, A=24+\(\frac{25\pi}{2}\)

or, A=\(\frac{48+25\pi}{2}\)

Final Step


Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.