Understand the problem

Find all positive integers $n$ that have 4 digits, all of them perfect squares, and such that $n$ is divisible by 2, 3, 5 and 7.
Source of the problem
Centroamerican olympiad 2016
Topic
Number theory
Difficulty Level
Easy
Suggested Book
An Excursion in Mathematics

Start with hints

Do you really need a hint? Try it first!

Note that the digits can only be 0,1,4,9. Also, the last digit has to be 0.
The sum of the digits has to be divisible by 3. Hence (checking by hand), the possible candidates are 1110,1140,1410,4410,4140,9000,9090,9900 and 9990. Note that the two initial examples were 1110 and 9000. The other ones came by replacing one or more the digits with other digits that are equivalent modulo 3.
Check for multiples of 7 in the list.
The answer is 4410.

Watch the video (Coming Soon)

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Amplitude and Complex numbers | AIME I, 1996 Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1996 based on Amplitude and Complex numbers.

Roots of Equation and Vieta’s formula | AIME I, 1996 Problem 5

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1996 based on Roots of Equation and Vieta’s formula.

Triangle and integers | AIME I, 1995 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 based on Triangle and integers.

Tetrahedron Problem | AIME I, 1992 | Question 6

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1992 based on Tetrahedron Problem.

Functional Equation Problem from SMO, 2018 – Question 35

Try this problem from Singapore Mathematics Olympiad, SMO, 2018 based on Functional Equation. You may use sequential hints if required.

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.