 How Cheenta works to ensure student success?
Explore the Back-Story

# Amplitude and Complex numbers | AIME I, 1996 Question 11 Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1996 based on Amplitude and Complex numbers.

## Amplitude and Complex numbers - AIME 1996

Let P be the product of the roots of $z^{6}+z^{4}+z^{2}+1=0$ that have a positive imaginary part and suppose that P=r(costheta+isintheta) where $0 \lt r$ and $0 \leq \theta \lt 360$ find $\theta$

• is 107
• is 276
• is 840
• cannot be determined from the given information

### Key Concepts

Equations

Complex Numbers

Integers

AIME, 1996, Question 11

Complex Numbers from A to Z by Titu Andreescue

## Try with Hints

First hint

here$z^{6}+z^{4}+z^{2}+1$=$z^{6}-z+z^{4}+z^{2}+z+1$=$z(z^{5}-1)+\frac{(z^{5}-1)}{(z-1)}$=$\frac{(z^{5}-1)(z^{2}-z+1)}{(z-1)}$ then $\frac{(z^{5}-1)(z^{2}-z+1)}{(z-1)}$=0

Second Hint

gives $z^{5}=1 for z\neq 1$ gives $z=cis 72,144,216,288$ and $z^{2}-z+1=0 for z \neq 1$ gives z=$\frac{1+-(-3)^\frac{1}{2}}{2}$=$cis60,300$ where cis$\theta$=cos$\theta$+isin$\theta$

Final Step

taking $0 \lt theta \lt 180$ for positive imaginary roots gives cis72,60,144 and then P=cis(72+60+144)=cis276 that is theta=276.

.

## Subscribe to Cheenta at Youtube

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1996 based on Amplitude and Complex numbers.

## Amplitude and Complex numbers - AIME 1996

Let P be the product of the roots of $z^{6}+z^{4}+z^{2}+1=0$ that have a positive imaginary part and suppose that P=r(costheta+isintheta) where $0 \lt r$ and $0 \leq \theta \lt 360$ find $\theta$

• is 107
• is 276
• is 840
• cannot be determined from the given information

### Key Concepts

Equations

Complex Numbers

Integers

AIME, 1996, Question 11

Complex Numbers from A to Z by Titu Andreescue

## Try with Hints

First hint

here$z^{6}+z^{4}+z^{2}+1$=$z^{6}-z+z^{4}+z^{2}+z+1$=$z(z^{5}-1)+\frac{(z^{5}-1)}{(z-1)}$=$\frac{(z^{5}-1)(z^{2}-z+1)}{(z-1)}$ then $\frac{(z^{5}-1)(z^{2}-z+1)}{(z-1)}$=0

Second Hint

gives $z^{5}=1 for z\neq 1$ gives $z=cis 72,144,216,288$ and $z^{2}-z+1=0 for z \neq 1$ gives z=$\frac{1+-(-3)^\frac{1}{2}}{2}$=$cis60,300$ where cis$\theta$=cos$\theta$+isin$\theta$

Final Step

taking $0 \lt theta \lt 180$ for positive imaginary roots gives cis72,60,144 and then P=cis(72+60+144)=cis276 that is theta=276.

.

## Subscribe to Cheenta at Youtube

This site uses Akismet to reduce spam. Learn how your comment data is processed.

### Knowledge Partner  