Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1996 based on Amplitude and Complex numbers.

Amplitude and Complex numbers – AIME 1996

Let P be the product of the roots of \(z^{6}+z^{4}+z^{2}+1=0\) that have a positive imaginary part and suppose that P=r(costheta+isintheta) where \(0 \lt r\) and \(0 \leq \theta \lt 360\) find \(\theta\)

  • is 107
  • is 276
  • is 840
  • cannot be determined from the given information

Key Concepts


Complex Numbers


Check the Answer

But try the problem first…

Answer: is 276.

Suggested Reading

AIME, 1996, Question 11

Complex Numbers from A to Z by Titu Andreescue

Try with Hints

First hint

here\(z^{6}+z^{4}+z^{2}+1\)=\(z^{6}-z+z^{4}+z^{2}+z+1\)=\(z(z^{5}-1)+\frac{(z^{5}-1)}{(z-1)}\)=\(\frac{(z^{5}-1)(z^{2}-z+1)}{(z-1)}\) then \(\frac{(z^{5}-1)(z^{2}-z+1)}{(z-1)}\)=0

Second Hint

gives \(z^{5}=1 for z\neq 1\) gives \(z=cis 72,144,216,288\) and \(z^{2}-z+1=0 for z \neq 1\) gives z=\(\frac{1+-(-3)^\frac{1}{2}}{2}\)=\(cis60,300\) where cis\(\theta\)=cos\(\theta\)+isin\(\theta\)

Final Step

taking \(0 \lt theta \lt 180\) for positive imaginary roots gives cis72,60,144 and then P=cis(72+60+144)=cis276 that is theta=276.


Subscribe to Cheenta at Youtube