How Cheenta works to ensure student success?
Explore the Back-Story

# AMC 8 2019 Problem 17 | Value of Product

Try out this beautiful algebra problem from AMC 8, 2019 based on finding the value of the product. You may use sequential hints to solve the problem.

## AMC 8 2019: Problem 17

What is the value of the product

$\left(\frac{1 \cdot 3}{2 \cdot 2}\right)\left(\frac{2 \cdot 4}{3 \cdot 3}\right)\left(\frac{3 \cdot 5}{4 \cdot 4}\right) \cdots\left(\frac{97 \cdot 99}{98 \cdot 98}\right)\left(\frac{98 \cdot 100}{99 \cdot 99}\right) ?$

(A) $\frac{1}{2}$

(B) $\frac{50}{99}$

(C) $\frac{9800}{9801}$

(D) $\frac{100}{99}$

(E) $50$

### Key Concepts

Algebra

Value

Telescoping

Answer: is $\frac{50}{99}$

AMC 8, 2019, Problem 17

## Try with Hints

We write

$\left(\frac{1.3}{2.2}\right)\left(\frac{2.4}{3.3}\right)\left(\frac{3.5}{4.4}\right) \ldots\left(\frac{97.99}{98.98}\right)\left(\frac{98.100}{99.99}\right)$

in a different form like

$\frac{1}{2} \cdot\left(\frac{3.2}{2.3}\right) \cdot\left(\frac{4.3}{3.4}\right) \cdots \cdots \left(\frac{99.98}{98.99}\right) \cdot \frac{100}{99}$

All of the middle terms eliminate each other, and only the first and last term remains i.e.

$\frac{1}{2} \cdot \frac{100}{99}$

$\frac{1}{2} \cdot \frac{100}{99}=\frac{50}{99}$

and that is the final answer.

Cheenta Numerates Program for AMC - AIME

## Subscribe to Cheenta at Youtube

This site uses Akismet to reduce spam. Learn how your comment data is processed.