How Cheenta works to ensure student success?
Explore the Back-Story

AMC 8 2019 Problem 17 | Value of Product

Try out this beautiful algebra problem from AMC 8, 2019 based on finding the value of the product. You may use sequential hints to solve the problem.

AMC 8 2019: Problem 17


What is the value of the product

$\left(\frac{1 \cdot 3}{2 \cdot 2}\right)\left(\frac{2 \cdot 4}{3 \cdot 3}\right)\left(\frac{3 \cdot 5}{4 \cdot 4}\right) \cdots\left(\frac{97 \cdot 99}{98 \cdot 98}\right)\left(\frac{98 \cdot 100}{99 \cdot 99}\right) ?$

(A) $\frac{1}{2}$


(B) $\frac{50}{99}$


(C) $\frac{9800}{9801}$


(D) $\frac{100}{99}$


(E) $50$


Key Concepts

Algebra

Value

Telescoping


Check the Answer


Answer: is $\frac{50}{99}$

AMC 8, 2019, Problem 17

Try with Hints


First hint

We write

$\left(\frac{1.3}{2.2}\right)\left(\frac{2.4}{3.3}\right)\left(\frac{3.5}{4.4}\right) \ldots\left(\frac{97.99}{98.98}\right)\left(\frac{98.100}{99.99}\right)$

in a different form like


$\frac{1}{2} \cdot\left(\frac{3.2}{2.3}\right) \cdot\left(\frac{4.3}{3.4}\right) \cdots \cdots \left(\frac{99.98}{98.99}\right) \cdot \frac{100}{99}$

Second Hint

All of the middle terms eliminate each other, and only the first and last term remains i.e.

$\frac{1}{2} \cdot \frac{100}{99}$

Final Step

$\frac{1}{2} \cdot \frac{100}{99}=\frac{50}{99}$

and that is the final answer.

Cheenta Numerates Program for AMC - AIME

Subscribe to Cheenta at Youtube


Try out this beautiful algebra problem from AMC 8, 2019 based on finding the value of the product. You may use sequential hints to solve the problem.

AMC 8 2019: Problem 17


What is the value of the product

$\left(\frac{1 \cdot 3}{2 \cdot 2}\right)\left(\frac{2 \cdot 4}{3 \cdot 3}\right)\left(\frac{3 \cdot 5}{4 \cdot 4}\right) \cdots\left(\frac{97 \cdot 99}{98 \cdot 98}\right)\left(\frac{98 \cdot 100}{99 \cdot 99}\right) ?$

(A) $\frac{1}{2}$


(B) $\frac{50}{99}$


(C) $\frac{9800}{9801}$


(D) $\frac{100}{99}$


(E) $50$


Key Concepts

Algebra

Value

Telescoping


Check the Answer


Answer: is $\frac{50}{99}$

AMC 8, 2019, Problem 17

Try with Hints


First hint

We write

$\left(\frac{1.3}{2.2}\right)\left(\frac{2.4}{3.3}\right)\left(\frac{3.5}{4.4}\right) \ldots\left(\frac{97.99}{98.98}\right)\left(\frac{98.100}{99.99}\right)$

in a different form like


$\frac{1}{2} \cdot\left(\frac{3.2}{2.3}\right) \cdot\left(\frac{4.3}{3.4}\right) \cdots \cdots \left(\frac{99.98}{98.99}\right) \cdot \frac{100}{99}$

Second Hint

All of the middle terms eliminate each other, and only the first and last term remains i.e.

$\frac{1}{2} \cdot \frac{100}{99}$

Final Step

$\frac{1}{2} \cdot \frac{100}{99}=\frac{50}{99}$

and that is the final answer.

Cheenta Numerates Program for AMC - AIME

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
Math Olympiad Program
magic-wandrockethighlight